Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-20T18:30:22.778Z Has data issue: false hasContentIssue false

Irreversible Carbon Diffusion in Growth of Cast Iron

Published online by Cambridge University Press:  21 February 2011

K. Nagaoka
Affiliation:
Faculty of Eng., Hokkaido University, Kita 13 Nishi 8, Kitaku, Sapporo, 060, Japan
M. Souma
Affiliation:
Faculty of Eng., Hokkaido University, Kita 13 Nishi 8, Kitaku, Sapporo, 060, Japan
Get access

Abstract

In gray cast iron carbon diffuses irreversibly and the result is a growth remaining castoff voids and graphite redistribution. The origin of primary growth is in the mechanism of carbon diffusion which is controlled by a ratchet at graphite where carbon is carried by vacancy flow. Growth of flake cast iron in oxygen reduced air at low oxygen content is accounted for by self carburizing due to a reaction of penetrated oxygen and graphite flakes. For the irreversible carbon migration by gaseous carrier another ratchet is suggested. Cracking theory for primary growth is replaced by castoff void theory, and oxidation theory is modified.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. AFS. Metals Handbook Vol.1, 91 (1978).Google Scholar
2. Grant, J.W., Foundry Trade J. 281–287, 321–331, 359–362 (1953).Google Scholar
3. Nagaoka, K., Tetsu-to-Hagane 39, 12501258 (1953).10.2355/tetsutohagane1915.39.11_1250CrossRefGoogle Scholar
4. Nagaoka, K., Exchange Paper 35th CIF 39 (1968).CrossRefGoogle Scholar
5. Nagaoka, K., AFS Cast Metals Research J. Sept. 145–149 (1969).Google Scholar
6. Nagaoka, K., Souma, M., and Kanayama, A., Bulletin of Facaulty of Eng., Hokkaido Univ. 48, 233243 (1968).Google Scholar
7. Nagaoka, K. and Souma, M., Imono 49, 742746 (1977).Google Scholar
8. Souma, M. and Nagaoka, K., Imono 43, 108116 (1971).Google Scholar
9. Souma, M. and Nagaoka, K., Imono 45, 430435 (1973).Google Scholar
10. Nagaoka, K., Imono 34, 380387 (1962).Google Scholar
11. Nagaoka, K., Tetsu-to-Hagane 50, 773781 (1964).10.2355/tetsutohagane1955.50.5_773CrossRefGoogle Scholar
12. Nagaoka, K., Tetsu-to-hhagane Overseas 4, 369375 (1964).CrossRefGoogle Scholar
13. Kikuta, T., Tetsu-to-Hagane 20, 591600 (1935).10.2355/tetsutohagane1915.20.8_591CrossRefGoogle Scholar
14. Nagaoka, K. and Hagiwara, I., Tetsu-to-hhagane 53, 131146 (1967).10.2355/tetsutohagane1955.53.2_131CrossRefGoogle Scholar
15. Souma, M. and Nagaoka, K., Bulletin of Faculty of Eng., Hokkaido Univ. 115, 3546 (1983).Google Scholar
16. Rugan, H.F. and Carpenter, H.C.H., J. Iron & Steel Inst, II. 29143 (1909).Google Scholar
17. Pearson, C.E., Carnegie Scholarship Mem. Iron & Steel Inst. 15, 281317 (1926).Google Scholar
18. Sawamura, H. and Yamamoto, J., Tetsu-to-Hagane 23, 863874 (1937).10.2355/tetsutohagane1915.23.9_863CrossRefGoogle Scholar
19. Kikuta, T., Tohoku Univ. Science Report 11, 117 (1922).Google Scholar
20. Benedicks, C. and Löfquist, H., J. Iron & Steel Inst. I, 603645 (1927).Google Scholar
21. Souma, M. and Nagaoka, K., Imono 47, 149155 (1975).Google Scholar
22. Souma, M. and Nagaoka, K., Imono 56, 269275 (1984).Google Scholar
23. Riedl, F., Berg-und-Hüttenmännishe Monatshefte 113, 2635 (1968).Google Scholar
24. Bunin, K.P., Baranov, A.A., and Pritomanova, M.I., Dopovidi Akademii Nauk Ukurainskoi PCP 6, 776779 (1960).Google Scholar