Hostname: page-component-5c6d5d7d68-xq9c7 Total loading time: 0 Render date: 2024-08-15T09:40:51.629Z Has data issue: false hasContentIssue false

Isocyanate-Modified Polysilazanes: Conversion to Ceramic Materials

Published online by Cambridge University Press:  25 February 2011

Joanne M. Schwark
Affiliation:
Hercules Incorporated, Research Center, Wilmington, DE 19894–0001
Mark J. Sullivan
Affiliation:
Hercules Incorporated, Research Center, Wilmington, DE 19894–0001
Get access

Abstract

A tailorable viscosity, liquid polysilazane has been developed which thermosets to a solid ceramic precursor for both silicon nitride (Si3N4) and silicon carbide (SiC). Conversion of the thermoset, crosslinked polysilazane to a ceramic material has been examined. Preferential formation of silicon carbide or silicon nitride is controlled by the pyrolysis conditions employed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. (a) Laine, R. M., Blum, Y. D., Tse, D., and Glaser, R., in Inorganic and Organometallic Polymers, Zeldin, M., Wynne, K. J., and Allcock, H. R., Eds., ACS Symposium Series 360, 124–42 (1988);Google Scholar
(b) Wynne, K. J. and Rice, R. W., Ann. Rev. Mater. Sci., 14, 297334 (1984).CrossRefGoogle Scholar
2. (a) Blum, Y. D., McDermott, G. A., Wilson, R. B., and Hirschon, A. S., Polymer Preprints, 32(3), 548–49 (1991);Google Scholar
(b) Blum, Y. D., Schwartz, K. B., and Laine, R. M., J. Mater. Sci., 24, 1707–18 (1989).CrossRefGoogle Scholar
3. (a) Burns, G. T. and Chandra, G., J. Am. Ceram. Soc, 72(2), 333–37 (1989);CrossRefGoogle Scholar
(b) van Dijen, F. K. and Pluijmakers, J., J. Eur. Ceram. Soc, 5, 385–90 (1989).CrossRefGoogle Scholar
4. Schwark, J. M., Polymer Preprints, 32(3), 567–68 (1991).Google Scholar
5. Schwark, J. M., U. S. Patent No. 4 929 704 (May 29, 1990); U. S. Patent No. 5 001 090 (March 19, 1991); U. S. Patent No. 5 021 533 (June 4, 1991).Google Scholar
6. (a) Carduner, K. R., Blackwell, C. S., Hammond, W. B., Reidinger, F., and Hatfield, G. R., J. Am. Chem. Soc, 112, 4676–79 (1990);CrossRefGoogle Scholar
(b) Hatfield, G. R. and Carduner, K. R., J. Mater. Sci., 24, 4209–19 (1989);Google Scholar
(b) Carduner, K. R., Carter, R. O. III, Milberg, M.E., and Crosbie, G.M., Anal. Chem., 59, 2794–97 (1987).CrossRefGoogle Scholar
7. Morrone, A. A., Toreki, W., and Batich, C. D., Materials Letters, 11(12), 1925 (1991).Google Scholar
8. (a) Apperley, D. C., Harris, R. K., Marshall, G. L., and Thompson, D. P., J. Am. Ceram. Soc, 74(4) 777–82 (1991);CrossRefGoogle Scholar
(b) Carduner, K. R., Shinozaki, S. S., Rokosz, M. J., Peters, C. R., and Whalen, T. J., J. Am. Ceram. Soc, 73(8), 2281–86 (1990);CrossRefGoogle Scholar
(c) Hartman, J. S., Richardson, M. R., Sherriff, B. L., and Winsborrow, B. G., J. Am. Chem. Soc, 109, 6059–67 (1987).Google Scholar
9. Nickel, K. G., Hoffmann, M. J., Greil, P., and Petzow, G., Adv. Ceram. Mater., 3(6), 557 (1988).CrossRefGoogle Scholar