Hostname: page-component-84b7d79bbc-2l2gl Total loading time: 0 Render date: 2024-07-28T04:21:21.221Z Has data issue: false hasContentIssue false

Isothermal Annealing of Ion Implanted Silicon With a Graphite Radiation Source

Published online by Cambridge University Press:  15 February 2011

S. R. Wilson
Affiliation:
SRDL, Motorola, Inc., 5005 E. McDowell Road, Phoenix, Arizona, USA
R. B. Gregory
Affiliation:
SRDL, Motorola, Inc., 5005 E. McDowell Road, Phoenix, Arizona, USA
W. M. Paulson
Affiliation:
SRDL, Motorola, Inc., 5005 E. McDowell Road, Phoenix, Arizona, USA
A. H. Hamdi
Affiliation:
Dept. of Physics, North Texas State University, Denton, Texas, USA
F. D. Mcdaniel
Affiliation:
Dept. of Physics, North Texas State University, Denton, Texas, USA
Get access

Abstract

Both (100) and (111) Si wafers were implanted with As, P or B to doses from 1013 to 1016/cm2 and annealed with a Varian IA-200 isothermal annealer. The anneal occurs in a vacuum using infrared radiation for exposure times of 5 to 30 sec. Sheet resistance (Rs), Hall effect, RBS and SIMS were used to analyze the wafers. For each dopant a decreasing Rs occurs with increasing exposure time until a minimum value is reached. Longer anneals produce increased dopant diffusion, and the Rs for As and P implanted wafers increased unless the wafer was capped with 0.05 μm of SiO2 which prevents a loss of dopant. The results for (100) wafers are better than for (111) with As doses ≤1015/cm2, however at doses >1015/cm2 the (100) and (111) results are comparable. The As implanted, isothermally annealed layers were thermally stable for As concentrations ≤2E 20/cm3.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hill, C., Laser and Electron Beam Solid Interactions and Materials Processing, Gibbons, J. F., Hess, L. D. and Sigmon, T. W., eds., North Holland, 1981, p. 361.Google Scholar
2.Shah, N. J., McMahon, R. A., Williams, J. G. S. and Ahmed, H., Laser and Electron Beam Solid Interactions and Materials Processing, Gibbons, J. F., Hess, L. D. and Sigmon, T. W., eds., North Holland, 1981, p. 202.Google Scholar
3.Yep, T. O., Fulks, R. T. and Powell, R. A., Appl. Phys. Lett. 38, 162 (1981).Google Scholar
4.Powell, R. A., Yep, T. O., and Fulks, R. T., Appl. Phys., Lett. 39, 150 (1981).Google Scholar
5.Tsaur, B.-Y, Donnelly, J. P., Fan, John C. C., and Geis, M. W., Appl. Phys. Lett. 39, 93 (1981).Google Scholar
6.Fulks, R. T., Russo, C. J., Hanley, P. R. and Kamins, T. I., 39, 604 (1981).Google Scholar
7.Downey, D. F., Russo, C. J. and White, J. T., Solid State Technology 25, 87 (1982).Google Scholar
8.Wilson, S. R., Gregory, R. B., Paulson, W. M., Hamdi, A. H., and McDaniel, F. D., Appl. Phys. Lett. 41, (1982).Google Scholar
9.Wilson, S. R., Gregory, R. B., Paulson, W. M., Diehl, H. T., Hamdi, A. H., and McDaniel, F. D., IEEE Transactions on Nuclear Science, NS–30 (1983) in press.Google Scholar
10.Tsai, M. Y., Morehead, F. F., Baglin, J. E. E. and Michael, A. E., J. Appl. Phys. 51, 3230 (1980).Google Scholar
11.Fair, Richard B. and Tsui, Joseph C. C., J. Electrochem. Soc. 122, 1689 (1975).Google Scholar
12.Chu, W. K., Muller, H., Mayer, J. W. and Sigmon, T. W., Ion Implantation in Semiconductors, Namba, S. ed., (Plenum, N.Y., 1975) p. 177.Google Scholar
13.Csepregi, L., Mayer, J. W. and Sigmon, T. W., Appl. Phys. Lett. 29, 92 (1976).Google Scholar
14.Fairfield, J. M. and Masters, B. J., J. Appl. Phys. 38, 3148 (1967).Google Scholar
15.Wilson, S. R., Paulson, W. M., Tam, G., Gregory, R. B., White, C. W. and Appleton, B. R., Laser and Electron Beam Interactions with Solids, Appleton, B. R. and Celler, G. K., eds., (North Holland, 1982) 287.Google Scholar