Hostname: page-component-84b7d79bbc-g7rbq Total loading time: 0 Render date: 2024-07-29T13:15:08.893Z Has data issue: false hasContentIssue false

Large Area Flexible Electronics Fabrication by Selective Laser Sintering of Nanoparticles with a Scanning Mirror

Published online by Cambridge University Press:  31 January 2011

Seung Hwan Ko
Affiliation:
max93ko@gmail.commaxko@kaist.ac.kr, KAIST, Mechanical Engineering, Daejeon, Korea, Republic of
Heng Pan
Affiliation:
hpan@berkeley.ed, UC Berkeley, Mechanical Engineering, Berkeley, California, United States
Nico Hotz
Affiliation:
hotz@berkeley.ed, UC Berkeley, Mechanical Engineering, Berkeley, California, United States
Costas P. Grigoropoulos
Affiliation:
cgrigoro@berkeley.ed, UC Berkeley, Mechanical Engineering, Berkeley, California, United States
Get access

Abstract

The development of electric circuit fabrication on heat and chemically sensitive polymer substrates has attracted significant interest as a pathway to low-cost or large-area electronics. We demonstrated the large area, direct patterning of microelectronic structures by selective laser sintering of nanoparticles without using any conventional, very expensive vacuum or photoresist deposition steps. Surface monolayer protected gold nanoparticles suspended in organic solvent was spin coated on a glass or polymer substrate. Then low power continuous wave Ar-ion laser was irradiated as a local heat source to induce selective laser sintering of nanoparticles by a scanning mirror system. Metal nanoparticle possessed low melting temperature (<150°C) due to thermodynamic size effect, and high laser absorption due to surface plasmon mode. These make metal nanoparticles ideal for the low temperature, low laser energy selective laser processing, and further applicable for electronics fabrication on a heat sensitive polymer substrate. We extended our laser selective sintering of nanoparticles research to a large area (> 4” wafer) using scanning mirror to demonstrate current technology for industry level fabrication.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Zschieschang, U., Klauk, H., Halik, M., Schmid, G., and Dehm, C., (2003) Adv. Mater. 15 1147–51.Google Scholar
2. Redinger, D., Molesa, S., Yin, S., Farschi, R., and Subramanian, V., (2004) IEEE trans. on electron devices 51 1978–83.Google Scholar
3. Loo, Y.L., Someya, T., Baldwin, K.W., Bao, Z., Ho, P., Dodabalapur, A., Katz, H.E., and Rogers, J.A., (2002) Proc. Natl. Acad. Sci. 99 10252–6.Google Scholar
4. Zaumseil, J., Someya, T., Bao, Z., Loo, Y.L., Cirelli, R., and Rogers, J.A., (2003) Appl. Phys. Lett. 82 793–5.Google Scholar
5. Blanchet, G.B., Loo, Y.L., Rogers, J.A., Gao, F. and Fincher, C.R., (2003) Appl. Phys. Lett. 82 463–5Google Scholar
6. Stutzmann, N., Friend, R.H., and Sirringhaus, H., (2003) Science 299 1881–84.Google Scholar
7. Ganier, F., Hajlaoui, R., Yasser, A., and Srivastava, P., (1994) Science 265 1684–86.Google Scholar
8. Bao, Z., Feng, Y., Dodavalapur, A., Raju, V.R., and Lovinger, A.J., (1997) Chem. Mater. 9 1299–301.Google Scholar
9. Ridley, B.A., Nivi, B., and Jacobson, J.M., (1999) Science 286 746–9.Google Scholar
10. Ko, S., Pan, H., Luscomb, C., Frèchet, J.M.J., Grigoropoulos, C.P., and Poulikakos, D., (2007) Nanotechnology 18, 345202.Google Scholar
11. Ko, S., Pan, H., Luscomb, C., Frèchet, J.M.J., Grigoropoulos, C.P., and Poulikakos, D., (2007) Appl. Phys. Lett. 90 141103(1–3).Google Scholar
12. Wang, J.Z., Zheng, Z.H., Li, H.W., Huck, W.T. S., and Sirringhaus, H., (2004) Nat. Mater 3 171–6.Google Scholar
13. Piqué, A., Chrisey, D.B., Fritz-Gerald, J.M., McGill, R.A., Auyeng, R.C.Y., Wu, H.D., Lakeou, S., Nguyen, V., Chung, R., and Duiganan, M., (2000) J. Mater.Res. 15 18721875.Google Scholar
14. Tan, B., Venkatakrishnan, K., and Tok, K.G., (2003) Appl. Surf. Sci. 207 365–71.Google Scholar
15. Sirringhaus, H., Kawase, T., Friend, R.H., Shimoda, T., Inbasekaran, M., Wu, W., and Woo, E.P., (2000) Science 290 2123–26.Google Scholar
16. Sirringhaus, H., and Shimoda, T., (2003) MRS bulletin 28 802–6.Google Scholar
17. Sele, C.W., Werne, T.V., Friend, R.H., and Sirringhaus, H., (2005) Adv. Mater. 8 9971001.Google Scholar
18. Perelaer, J., Klokkenburg, M., Hendriks, C.E., Schubert, U.S., (2006) Adv. Mater. 18 2101.Google Scholar