Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-23T13:16:41.986Z Has data issue: false hasContentIssue false

Laser Melting and Recrystallization of Bulk Si by Nanosecond UV Laser Pulses

Published online by Cambridge University Press:  15 February 2011

C. Garcia
Affiliation:
Física de la Materia Condensada, Cristalografía y Mineralogía. Facultad de Ciencias. Prado de la Magdalena. 47005 Valladolid, Spain
A.C. Prieto
Affiliation:
Física de la Materia Condensada, Cristalografía y Mineralogía. Facultad de Ciencias. Prado de la Magdalena. 47005 Valladolid, Spain
J. Jimenez
Affiliation:
Física de la Materia Condensada, Cristalografía y Mineralogía. ETS Ingenieros Industriales. Paseo del Cauce. 47011 Valladolid, Spain
L.F. Sanz
Affiliation:
Física de la Materia Condensada, Cristalografía y Mineralogía. ETS Ingenieros Industriales. Paseo del Cauce. 47011 Valladolid, Spain
Get access

Abstract

Laser ablation of semiconductors presents an increasing interest for both thin film growth and surface modification. We present herein a study of the damage produced in bulk silicon by nanoseconds UV laser pulses with energy above the melting threshold. This study is carried out with a Raman microprobe. Polarized microRaman was used to reveal the main changes in the melted and recrystallized volume. These changes were observed in the liquid/solid boundaries, where tensile stress due to the induced thermal wave is more important. The morphology of the melted region evidences matter accumulation at such a boundary.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Rys, A., Shieh, Y., Compaan, A., Yao, H., Bhat, A.; Opt. Engineering 29, p. 329 (1990).Google Scholar
2 Jiménez, J., Martín, E., García, B.J., Piqueras, J.; Appl. Phys. A 55, p. 566 (1992).Google Scholar
3 Licata, T. J., Podlesnik, D.V., Tang, Hua, Osgood, R.M. Jr.; J. Vac. Sci. Techol. A 18, p. 1618 (1990).Google Scholar
4 Imanaga, S., Kawai, H., Kajiwara, K., Kaneco, K., Watanabe, N.; J. Appl. Phys. 62, p. 2381 (1987).Google Scholar
5 Montgomery, P.C., Fillard, J.P., Castagné, M., Montaner, D.; Semicond. Sci. Technol. 7A, p. 237 (1992).Google Scholar
6 Van Vechten, J.A.; Semiconductors Probed by Ultrafast Laser Spectroscopy. Vol. II. (Academic Press, New York, 1984), p. 95.Google Scholar
7 Dutartre, D.; Mat. Res. Symp. Proc. vol. 107, p. 157 (1988).Google Scholar
8 Anastassakis, E., Pinczuk, A., Burstein, E., Pollak, F.H., Cardona, M.; Sol. st. Commun. 8, p. 133 (1970).Google Scholar
9 Pollak, F.H.; Analytical Raman Spectroscopy, ed. by Grasselli, G. and Bulkin, B.J.; Chemical Analysis Series, vol. 114 (J. Wiley, N4 1991) Ch 6, p. 137.Google Scholar
10 García, C., Ramos, J., Prieto, A.C., Jiménez, J., Geertsen, C., acour, J.L. and Mauchien, P.; Appl. Surf. Sci., (to be published).Google Scholar
11 Jiménez, J., Martín, E., Torres, A., Martín, B., Ruil, F., Sobrón, F.; J. Mater. Sci. Mater, in Electron. 4, p. 271 (1993).Google Scholar
12 Holz, L., Semjonow, A., Lenz, K., Lan, A., Richter, W., Wilhelm, H.; J. Appl. Phys. 72, p. 2472 (1992).Google Scholar
13 Torres, A., Martín, E., Pérez-Rodríguez, A., Jiménez, J., Morante, J.R.; Silicon and Insulator Technology and Devices, ed. by Stocmenos, J. (The Electrochemical Soc., Pennington 1994) p. 203.Google Scholar