Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T14:01:22.881Z Has data issue: false hasContentIssue false

Laser-Induced Liftoff And Laser Patterning Of Large Free-Standing GaN Substrates

Published online by Cambridge University Press:  10 February 2011

O. Ambacher
Affiliation:
Walter Schottky Institute, Technical University of Munich, Am Coulombwall, D-85748 Garching, Germany, e-mail: ambacher@wsi.tu-muenchen.de
M. K. Kelly
Affiliation:
Walter Schottky Institute, Technical University of Munich, Am Coulombwall, D-85748 Garching, Germany, e-mail: ambacher@wsi.tu-muenchen.de
C. R. Miskys
Affiliation:
Walter Schottky Institute, Technical University of Munich, Am Coulombwall, D-85748 Garching, Germany, mkelly@planet-interkom.de
L. Höppel
Affiliation:
Walter Schottky Institute, Technical University of Munich, Am Coulombwall, D-85748 Garching, Germany
C. Nebel
Affiliation:
Walter Schottky Institute, Technical University of Munich, Am Coulombwall, D-85748 Garching, Germany
M. Stutzmann
Affiliation:
Walter Schottky Institute, Technical University of Munich, Am Coulombwall, D-85748 Garching, Germany
Get access

Abstract

Free-standing GaN crystals are produced from 200-300 µn thick GaN films grown on 2 inch sapphire substrates by hydride vapor phase epitaxy. The GaN films are separated from the growth substrate by laser-induced liftoff, using a pulsed laser to thermally decompose a thin layer of GaN close to the film-substrate interface. The free-standing films are polished and used for the homoepitaxial growth of high quality GaN layers by metalorganic chemical vapor deposition. The structural and optical properties of the homoepitaxial films in comparison to layers grown on sapphire are significantly improved, mainly because of lower dislocation density and surface roughness as low as 5×106 cm2 and 0.2 nm, respectively.

Laser-induced thermal decomposition is also applied to achieve etching of GaN. At exposures of 500 mJ/cm2 with 355 nm light, etch rates of up to 90 nm for one pulse are obtained. Illumination with an interference grating is used to produce trenches as narrow as 100 nm or sinusoidal surface patterns with a period of 260 nm. Such surface morphologies are very useful for the processing of anti-reflection coatings or distributed Bragg reflectors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Teisseyre, H., Perlin, P., Suski, T., Grzegory, I., Porowski, S., Jun, J., Pietraszko, A., and Moustakas, T.D., J. Appl. Phys. 76, 2429 (1994).Google Scholar
2 Nakamura, S. and Fasol, G., The Blue Laser Diodes, Springer, Heidelberg (1997).Google Scholar
3 Pankove, J.I. and Moustakas, T.D., GaN, Academic Press, New York (1998).Google Scholar
4 Ambacher, O., J. Phys. D: Appl. Phys. 31, 2653 (1998).Google Scholar
5 Weimann, N.G., Eastman, L.F., Doppalapudi, D., Ng, H.M., and Moustakas, T.D., J. Appl. Phys. 83, 3656 (1998).Google Scholar
6 Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., Sugimoto, Y., Kozaki, T., Umemoto, H., Sano, M., and Chocho, K., Jpn. J. Appl. Phys. 36, L1568 (1997).Google Scholar
7 Ponce, F.A., Bour, D.P., Götz, W., Johnson, N.M., Helava, H.I., Grzegory, I., Jun, J., and Porowski, S., Appl. Phys. Lett. 68, 917 (1996).Google Scholar
8 Porowski, S., Grzegory, I., and Jun, J., High Pressure Chemical Synthesis, ed. Jurczak, J. and Baranowski, B. (Elsevier, Amsterdam, 1989), p. 21.Google Scholar
9 Leszczynski, M., Beaumont, B., Frayssinet, E., Knap, W., Prystawko, P., Suski, T., Grzegory, I., and Porowski, S., Appi. Phys. Lett. 75, 1276 (1999).Google Scholar
10 Kirchner, C., Schwegler, V., Eberhard, F., Kamp, M., Ebeling, K.J., Kornitzer, K., Ebner, T., Thonke, K., Sauer, R., Prystawko, P., Leszczyski, M., Grzegory, I., and Porowski, S., Appl. Phys. Lett. 75, 1098 (1999).Google Scholar
11 Vaudo, R.P., Phanse, V.M., Wu, X., Golan, Y. and Speck, J.S., 2nd Int. Conf. Nitride Semiconductors, Tokushima, 1997.Google Scholar
12 Golan, Y., Wu, X.H., Speck, J.S., Vaudo, R.P., and Phanse, V.M., Appl. Phys. Lett. 73, 3090 (1998).Google Scholar
13 Nakamura, S. et al. , Appl. Phys. Lett. 72, 2014 (1998); Appl. Phys. Lett. 73, 832 (1998).Google Scholar
14 Pearton, S.J., Zolper, J.C., Shul, R.J., and Ren, F., J. Appl. Phys. 86, 1 (1999).Google Scholar
15 Ambacher, O., Brandt, M.S., Dimitrov, R., Metzger, T., Stutzmann, M., Fischer, R.A., Miehr, A., Bergmaier, A. and Dollinger, G., J. Vac. Sci. Technol. B14, 3532 (1996).Google Scholar
16 Kelly, M.K., Ambacher, O., Dahlheimer, B., Groos, G., Dimitrov, R., Angerer, H., and Stutzmann, M., Appl. Phys. Lett. 69, 1749 (1996).Google Scholar
17 Kelly, M.K., Ambacher, O., Dimitrov, R., Handschuh, R., and Stutzmann, M., phys. stat. sol. (a) 159, R3 (1997).Google Scholar
18 Kelly, M.K., Vaudo, R.P., Phanse, V.M., Görgens, L., Ambacher, O., and Stutzmann, M., Jpn. J. Appl. Phys. 38, L217 (1999).Google Scholar
19 Miskys, C.R., Kelly, M.K., Ambacher, O., and Stutzmann, M., phys. stat. sol. (a) 176, 443 (1999).Google Scholar
20 Skromme, B.J., Jayapalan, J., Vaudo, R.P., and Phanse, V.M., Appl. Phys. Lett. 74, 2354 (1999).Google Scholar
21 Barin, I., Knacke, O., and Kubaschewski, O., Thermochemical Properties of Inorganic Substances (Springer, Berlin, 1977).Google Scholar
22 Munir, Z.A. and Searcy, A.W., J. Chem. Phys. 42, 4223 (1965).Google Scholar
23 Brunner, D., Angerer, H., Bustarret, E., Freudenberg, F., Höpler, R., Dimtrov, R., Ambacher, O., and Stutzmann, M., J. Appl. Phys. 82, 5090 (1997).Google Scholar
24 Sichel, E.K. and Pankove, J.I., J. Phys. Chem. Solids 38, 330 (1977).Google Scholar
25 Kelly, M.K., Ambacher, O., Dimitrov, R., Angerer, H., Handschuh, R., and Stutzmann, M., Mat. Res. Soc. Symp. Proc. 482, 973 (1998).Google Scholar