Hostname: page-component-84b7d79bbc-dwq4g Total loading time: 0 Render date: 2024-07-31T09:17:24.536Z Has data issue: false hasContentIssue false

Lattice Defects in Epitaxial Ba2Bi4Ti5O18 Thin Films Grown by Pulsed Laser Deposition Onto LaNiO3 Bottom Electrodes

Published online by Cambridge University Press:  10 February 2011

N.D. Zakharov
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany
A.R. James
Affiliation:
now with Materials Res. Lab., Penn State University, University Park, PA, USA
A. Pignolet
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany
S. Senz
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany
D. Hesse
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany
Get access

Abstract

Epitaxial, ferroelectric Ba2Bi4Ti5O18 films grown on LaNiO3/CeO2/ZrO2:Y2O3 epitaxial layers on Si(100) are investigated by cross-section high-resolution transmission electron microscopy (HRTEM). The films are perfectly oriented and consist of well-developed grains of rectangular shape. The grain boundaries are strained and contain many defects, especially a new type of defect, which can be described as a staircase formed by repeated lattice shifts of Δ ∼ c/12 ∼ 4.2 Å in the [001] direction. This repeated shift results in seemingly bent ribbons of stacked Bi2O2 planes, involving, however, individual Bi2O2 planes which remain strongly parallel to the (001) plane. These defects contain an excess of bismuth. Other defects found in the grain interior include mistakes in the stacking sequence originating from the presence of single, well-oriented, non-stoichionietric layers intergrown with the stoichiometric Ba2Bi4Ti5O18 film matrix.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Scott, J.F., Ferroelectric Memories, Springer, Heidelberg, 2000.Google Scholar
2 Symetrix Corporation, International Patent H01L27/115, 21/320529/92 (1992).Google Scholar
3 Araujo, C.A. Paz de, Cuchiaro, J.D., McMillan, L.D., Scott, M.C., and Scott, J.F., Nature 374, 627 (1995).Google Scholar
4 Satyalakshmi, K.M., Alexe, M., Pignolet, A., Zakharov, N.D., Harnagea, C., Senz, S., and Hesse, D., Appl.Phys.Lett. 74, 603 (1999).Google Scholar
5 Pignolet, A., Schäfer, C., Satyalakshmi, K.M., Harnagea, C., Hesse, D., and Gésele, U., Appl.Phys. A 70, 283 (2000).Google Scholar
6 Harnagea, C., Pignolet, A., Alexe, M., Hesse, D., and Gésele, U., Appl.Phys. A 70, 261 (2000).Google Scholar
7 James, A.R., Pignolet, A., Hesse, D., and Gésele, U., J.Appl.Phys. 87, 2825 (2000).Google Scholar
8 James, A.R., Pignolet, A., Senz, S., Zakharov, N.D., and Hesse, D., Solid State Commun. 114, 249 (2000).Google Scholar
9 Aurivillius, B. and Fang, P.H., Phys.Rev. 126, 893 (1962).Google Scholar
10 Suzuki, T., Nishi, Y., Fujimoto, M., Ishikawa, K., and Funakubo, H., Jpn.J.Appl.Phys. 38, L1261 and L1265 (1999).Google Scholar
11 Traeholt, C., Wen, J.G., Svetchnikov, V., Delsing, A., and Zandbergen, H.W., Physica C 206, 318 (1993).Google Scholar
12 Zakharov, N.D., Hesse, D., Auge, J., Roskos, H.-G., Kurz, H., Hoffschulz, H., Dreβen, J., Stahl, H., and Gtintherodt, G., J.Mater.Res. 11, 2416 (1996).Google Scholar