Hostname: page-component-5c6d5d7d68-sv6ng Total loading time: 0 Render date: 2024-08-15T01:12:55.305Z Has data issue: false hasContentIssue false

Lattice Trapping of Cracks in Fe Using an Interatomic Potential Derived from Experimental Data and Ab Initio Calculations

Published online by Cambridge University Press:  21 March 2011

D. Farkas
Affiliation:
Department of Materials Science and Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA24061-0237
M. J. Mehl
Affiliation:
Center for Computational Materials Science, Naval Research Laboratory, Washington, DC, USA20375-5345
D. A. Papaconstantopoulos
Affiliation:
Center for Computational Materials Science, Naval Research Laboratory, Washington, DC, USA20375-5345
Get access

Abstract

A recent approach which combines first-principles and experimental data to produce highly accurate and reliable interatomic potentials is tested for the case of bcc and fcc Fe. The Embedded-Atom-like potential accurately reproduces the basic equilibrium properties of bcc Fe, including elastic constants, phonon properties, and vacancy formation energies, as well as the correct relative stability of structures with coordination numbers ranging from 12 to 4. This potential was used in a simulation study of lattice trapping effects during the cleavage fracture of bcc Fe. A strong directional anisotropy for crack propagation was observed due to lattice trapping effects. The strongest trapping effects were observed for cleavage along the {110} planes and it was found that lattice trapping strongly favors cleavage along the {100} planes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Daw, M. S. and Baskes, M. I., Phys. Rev. B 29, 6443 (1984).10.1103/PhysRevB.29.6443Google Scholar
2. Pasianot, R., Farkas, D. and Savino, E., Phys. Rev. B 43, 6952 (1991).10.1103/PhysRevB.43.6952Google Scholar
3. Mishin, Y., Mehl, M., Farkas, D. and Papaconstantopoulos, D., Phys. Rev. B 59, 3393 (1999).10.1103/PhysRevB.59.3393Google Scholar
4. Andersen, O. K., Phys. Rev. B 12, 3060 (1975).10.1103/PhysRevB.12.3060Google Scholar
5. Wei, S. H. and Krakauer, H., Phys. Rev. Lett. 55, 1200 (1985).10.1103/PhysRevLett.55.1200Google Scholar
6. Kohn, W. and Sham, L. J., Phys. Rev. 140, A1133 (1965).10.1103/PhysRev.140.A1133Google Scholar
7. Barth, U. von and Hedin, L., J. Phys. C 5, 1629 (1972).10.1088/0022-3719/5/13/012Google Scholar
8. Perdew, J.P. and Wang, Y., Phys. Rev. B 45, 13244 (1992).10.1103/PhysRevB.45.13244Google Scholar
9. Monkhorst, H.J. and Pack, J. D., Phys. Rev. B 13, 5188 (1976).10.1103/PhysRevB.13.5188Google Scholar
10. Voter, R. J. H. A. F. and Chen, S. P., in: Atomistic Simulation of Materials, edited by Vítek, V. and Srolovitz, D., 219, Plenum, New York and London (1989).Google Scholar
11. Simonelli, G., Pasianot, R. and Savino, E., in: Materials Research Society Symposium Proceedings, volume 291, 567 (1993).10.1557/PROC-291-567Google Scholar
12. Smith, C. J., editor, Metal Reference Book, Butterworth, London, fifth edition (1976).Google Scholar
13. Mishin, Y. and Farkas, D., Phil. Mag. A 75, 169 (1997).10.1080/01418619708210289Google Scholar
14. Simonelli, G., Pasianot, R. and Savino, E. J., Phys. Rev. B 55, 5570 (1997).10.1103/PhysRevB.55.5570Google Scholar
15. Murr, L. E., Interfacial Phenomena in Metals and Alloys, Addison-Wesley, Reading, MA (1975).Google Scholar
16. Rose, J. H., Smith, J. R., Guinea, F. and Ferrante, J., Phys. Rev. B 29, 2963 (1984).10.1103/PhysRevB.29.2963Google Scholar
17. Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P., Numerical Recipes in FORTRAN, Cambridge University Press (1992), p. 402.Google Scholar
18. Rice, J. R., J. Mech. Phys. Solids 40, 239 (1992).10.1016/S0022-5096(05)80012-2Google Scholar
19. Farkas, D., Zhou, S., Vailhé, C., Mutasa, B. and Panova, J., Journal of Materials Research 12, 93 (1997).10.1557/JMR.1997.0015Google Scholar
20. Sih, G.C. and Liebowitz, H., in: Fracture – An Advanced Treatise, edited by Liebowitz, H., volume II, 69189, Academic Press, New York (1968).Google Scholar
21. Shastry, V. and Farkas, D., Modeling and Simulation in Materials Science and Engineering 4, 473 (1996).10.1088/0965-0393/4/5/004Google Scholar