Hostname: page-component-7bb8b95d7b-495rp Total loading time: 0 Render date: 2024-09-11T17:10:47.033Z Has data issue: false hasContentIssue false

Light trapping in hydrogenated amorphous and nano-crystalline silicon thin film solar cells

Published online by Cambridge University Press:  31 January 2011

Jeffrey Yang
Affiliation:
jyang@uni-solar.com, United Solar Ovonic LLC, 1100 West Maple Road, Troy, Michigan, 48084, United States
Baojie Yan
Affiliation:
byan@uni-solar.com, United Solar Ovonic LLC, Troy, Michigan, United States
Guozhen Yue
Affiliation:
gyue@uni-solar.com, United Solar Ovonic LLC, Troy, Michigan, United States
Subhendu Guha
Affiliation:
sguha@uni-solar.com, United Solar Ovonic LLC, Troy, Michigan, United States
Get access

Abstract

Light trapping effect in hydrogenated amorphous silicon-germanium alloy (a-SiGe:H) and nano-crystalline silicon (nc-Si:H) thin film solar cells deposited on stainless steel substrates with various back reflectors is reviewed. Structural and optical properties of the Ag/ZnO back reflectors are systematically characterized and correlated to solar cell performance, especially the enhancement in photocurrent. The light trapping method used in our current production lines employing an a-Si:H/a-SiGe:H/a-SiGe:H triple-junction structure consists of a bi-layer of Al/ZnO back reflector with relatively thin Al and ZnO layers. Such Al/ZnO back reflectors enhance the short-circuit current density, Jsc, by ˜20% compared to bare stainless steel. In the laboratory, we use Ag/ZnO back reflector for higher Jsc and efficiency. The gain in Jsc is about ˜30% for an a-SiGe:H single-junction cell used in the bottom cell of a multi-junction structure. In recent years, we have also worked on the optimization of Ag/ZnO back reflectors for nano-crystalline silicon (nc-Si:H) solar cells. We have carried out a systematic study on the effect of texture for Ag and ZnO. We found that for a thin ZnO layer, a textured Ag layer is necessary to increase Jsc, even though the parasitic loss is higher at the Ag and ZnO interface due to the textured Ag. However, a flat Ag can be used for a thick ZnO to reduce the parasitic loss, while the light scattering is provided by the textured ZnO. The gain in Jsc for nc-Si:H solar cells on Ag/ZnO back reflectors is in the range of ˜60-75% compared to cells deposited on bare stainless steel, which is much larger than the enhancement observed for a-SiGe:H cells. The highest total current density achieved in an a-Si:H/a-SiGe:H/nc-Si:H triple-junction structure on Ag/ZnO back reflector is 28.6 mA/cm2, while it is 26.9 mA/cm2 for a high efficiency a-Si:H/a-SiGe:H/a-SiGe:H triple-junction cell.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Guha, S. Yang, J. Banerjee, A. Yan, B. and Lord, K. Sol. Energy Mate Mater. Sol. Cells 78, 329(2003).Google Scholar
[2] Shah, A.V. Meier, J. Vallat-Sauvain, E., Wyrsch, N. Kroll, U. Droz, C. and Graf, U. Sol. Energy Mate Mater. Sol. Cells 78, 469(2003).Google Scholar
[3] Banerjee, A. and Guha, S. J. Appl. Phys. 69, 1030(1991).Google Scholar
[4] Banerjee, A. Yang, J. Hoffman, K. and Guha, S. Appl. Phys. Lett., 65, 472(1994).Google Scholar
[5] Oyama, T. Kambe, M M., Taneda, N N., and Masumo, K K., Mater. Res. Soc. Symp. Proc. 1101E, KK02.1 (2008).Google Scholar
[6] Bailat, J. Dominé, D., Schlüchter, R., Steinhauser, J. Faÿ, S. Freitas, F. Bücher, C., Feitknecht, L. Niquille, X. Tscharner, T. Shah, A. and Ballif, C., Record of the 4th World Conference on Photovoltaic Energy Conversion (2006. Hawaii, USA), p1533.Google Scholar
[7] Müller, J., Schöpe, G., Kluth, O. Rech, B. Ruske, M. Trube, J. Szyszka, B. Höing, Th., Jiang, X., and Bräuer, G., Proc. of 28 th IEEE Photovoltaic Specialists Conference (Anchorage, AK, 2000), p. 758.Google Scholar
[8] Pillai, S. Catchpole, K. R. Trupke, T. and Green, M. A. J. Appl. Phys. 101, 093105, (2007).Google Scholar
[9] Zeng, L., Bermel, P. Yi, Y. Alamariu, B. A. Broderick, K. A. Liu, J. Hong, C. Duan, X. Joannopoulos, J. and, Kimerling, L. C. Appl. Phys. Lett., 93, 221105(2008).Google Scholar
[10] Eisele, C. Nebel, C. E. and Stutzmann, M. J. Appl. Phys. 89, 7722(2001).Google Scholar
[11] Sai, H. Fujiwara, H. Kondo, M. and Kanamori, Y. Appl. Phys. Lett., 93, 143501(2008).Google Scholar
[12] Yan, B. Owens, J. M. Jiang, C. C. S. Yang, J. and Guha, S. Mater. Res. Soc. Symp. Proc. 862, 603 (2005).Google Scholar
[13] Yan, B. Yue, G. Jiang, C. C. S. Yan, Y. Owens, J. M. Yang, J. and Guha, S. Mater. Res. Soc. Symp. Proc. 1101E, KK13.2 (2008).Google Scholar
[14] Yang, J., Banerjee, A. and Guha, S., Appl. Phys. Lett. 70, 2975(1997).Google Scholar
[15] Yan, B. Yue, G. Yang, J. Banerjee, A. and Guha, S. Mater. Res. Soc. Symp. Proc. 762, 309(2003).Google Scholar
[16] Yan, B. Yue, G. and Guha, S. Mater. Res. Soc. Symp. Proc. 989, 335(2007).Google Scholar
[17] Springer, J. Poruba, A. Mullerova, L. Vanecek, M. Kluth, O. and Rech, B. J J. Appl Appl. Phys. 95, 1427(2004).Google Scholar
[18] Ghannam, M. Y. Abouelsaood, A. A. and Mertens, R. P. J. Appl. Phys. 84 84, 496(1998).Google Scholar
[19] Yue, G. Sivec, L. Yan, B. Yang, J. and Guha, S. Mater. Res. Soc. Symp. Proc. (2009), in pressGoogle Scholar
[20] Nasuno, Y. Kondo, M. and Matsuda, A. Proc. of 28 th IEEE Photovoltaic Specialists Conference (Anchorage, Alaska, 2000), p. 142.Google Scholar