Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-07-07T17:51:57.717Z Has data issue: false hasContentIssue false

Light-Emitting Diodes with Voltage-Switchable Colors from Semiconducting Polymer/Polymer Heterojunctions

Published online by Cambridge University Press:  10 February 2011

Xuejun Zhang
Affiliation:
Departments of Chemical Engineering and Chemistry, University of Rochester, Rochester, New York14627-0166
Samson A. Jenekhe
Affiliation:
Departments of Chemical Engineering and Chemistry, University of Rochester, Rochester, New York14627-0166
Get access

Abstract

Reversible electroluminescence color changes with applied voltage have been observed in light-emitting diodes fabricated from semiconducting polymer heterojunctions consisting of an electron transporting polybenzobisthiazole and hole transporting poly(p-phenylene vinylene) when layer thicknesses are less than 60–100 nm. Enhanced device performances such as lower turn-on voltage and higher efficiency and luminance were also obtained compared to single-layer devices. The observed voltage-switchable emission colors in these nanoscale heterojunction light sources can be understood in terms of spatial confinement effects which are related to field-dependent charge transport and trapping processes in the materials. These results also demonstrate the use of new high temperature rigid-rod polymers as electron transport and emissive layers in electroluminescent devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Greenham, N. C., Moratti, S. C., Bradley, D. D. C., Friend, R. H., and Holmes, A. B., Nature 365, p.628 (1993).Google Scholar
2. Yamamoto, T., Inoue, T., and Kanbara, T., Jpn. J. Appl. Phys. 33, p.L250 (1994).Google Scholar
3. Jenekhe, S. A., Zhang, X., Chen, X.L., Choong, V.-E., Gao, Y., and Hsieh, B. R., Chem. Mater. 9, p.409, (1997).Google Scholar
4. O'Brien, D., Weaver, M. S., Lidzey, D. G., and Bradley, D. D. C., Appl. Phys. Lett. 69, p. 881 (1996).Google Scholar
5. Burroughes, J. H., Bradley, D. D. C., Brown, A. R., Marks, R. N., Marckay, K., Friend, R. H., Burns, P. L., and Holmes, A. B., Nature 347, p.539 (1990).Google Scholar
6. Berggren, M., Inganas, O., Gustafsson, G., Rasmusson, J., Andersson, M. R., Hjertberg, T., and Wennerstrom, O., Nature 372, p.444(1994).Google Scholar
7. Kalinowski, J., Macro, P. Di, Cocchi, M., Fattori, V., Camaioni, N., and Duff, J., Appl. Phys. Lett. 68, p.2317 (1996).Google Scholar
8. (a) Osaheni, J. A. and Jenekhe, S. A., Macromolecules 26, p.4726 (1993); (b) J. A. Osaheni and S. A. Jenekhe, Chem. Mater. 7, p. 672 (1995); (c) A. K. Alanko and S. A. Jenekhe, manuscript in preparation.Google Scholar
9. Jenekhe, S. A. and Johnson, P. O., Macromolecules 23, p. 4419 (1990).Google Scholar
10. Greenham, N. C., Friend, R. H., and Bradley, D. C. C., Adv. Mater. 6, p.491 (1994).Google Scholar