Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T10:44:14.632Z Has data issue: false hasContentIssue false

Light-trapping in Thin Film Silicon Solar Cells with a Combination of Periodic and Randomly Textured Back-reflectors

Published online by Cambridge University Press:  17 May 2012

Sambit Pattnaik
Affiliation:
Iowa State University, Ames, Iowa;
Nayan Chakravarty
Affiliation:
Iowa State University, Ames, Iowa;
Rana Biswas
Affiliation:
Iowa State University, Ames, Iowa;
D. Slafer
Affiliation:
Lightwave Power, Inc., Cambridge, Massachusetts.
Vikram Dalal
Affiliation:
Iowa State University, Ames, Iowa;
Get access

Abstract

Light trapping is essential to harvest long wavelength red and near-infrared photons in thin film silicon solar cells. Traditionally light trapping has been achieved with a randomly roughened Ag/ZnO back reflector, which scatters incoming light uniformly through all angles, and enhances currents and cell efficiencies over a flat back reflector. A new approach using periodically textured photonic-plasmonic arrays has been recently shown to be very promising for harvesting long wavelength photons, through diffraction of light and plasmonic light concentration. Here we investigate the combination of these two approaches of random scattering and plasmonic effects to increase cell performance even further. An array of periodic conical back reflectors was fabricated by nanoimprint lithography and coated with Ag. These back reflectors were systematically annealed to generate different amounts of random texture, at smaller spatial scales, superimposed on a larger scale periodic texture. nc-Si solar cells were grown on flat, periodic photonic-plasmonic substrates, and randomly roughened photonic-plasmonic substrates. There were large improvements (>20%) in the current and light absorption of the photonic-plasmonic substrates relative to flat. The additional random features introduced on the photonic-plasmonic substrates did not improve the current and light absorption further, over a large range of randomization features.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Schropp, R. E. I. and Zeman, M., Amorphous and microcrystalline silicon solar cells: modeling, materials, and device technology. (Springer, 1998) p.207.CrossRefGoogle Scholar
Haug, F. J., Soderstrom, T., Cubero, O., Terrazzoni-Daudrix, V., and Ballif, C., J. of Appl. Phys. 104, 064509 (2008).CrossRefGoogle Scholar
Yue, G. Z., Sivec, L., Owens, J. M., Yan, B. J., Yang, J., and Guha, S., Appl. Phys. Lett. 95, 263501 (2009).CrossRefGoogle Scholar
Muller, J., Kluth, O., Wieder, S., Siekmann, H., Schope, G., Reetz, W., Vetterl, O., Lundszien, D., Lambertz, A., Finger, F., Rech, B., Wagner, H., Sol. Energy Mater. Sol. Cells 66, 275 (2001).CrossRefGoogle Scholar
Dagamseh, A. M. K., Vet, B., Sutta, P., Zeman, M., Sol. Energy Mater. Sol. Cells 94, 2119 (2010).CrossRefGoogle Scholar
Battaglia, C., Escarre, J., Soderstrom, K., Erni, L., Ding, L., Bugnon, G., Billet, A., Boccard, M., Barraud, L., DeWolf, S., Haug, F.J., Despeisse, M., Ballif, C., Nano Letters 11, 661 (2011).CrossRefGoogle Scholar
Berginski, M., Hupkes, J., Gordijn, A., Reetz, W., Watzen, T., Rech, B., Wuttig, M., Sol. Energy Mater. Sol. Cells 92, 1037 (2008).CrossRefGoogle Scholar
Springer, J., Poruba, A., Mullerova, L., Vanecek, M., Kluth, O., Rech, B., J. of Appl. Phys. 95, 1427 (2004).CrossRefGoogle Scholar
Biswas, R. and Zhou, D. Y., Physica Status Solidi a-Applications and Materials Science 207, 667 (2010) .CrossRefGoogle Scholar
Ferry, V. E., Verschuuren, M. A., Li, H. B. T., Walters, R. J., Schropp, R. E. I., Atwater, H. A., Polman, A., Opt. Exp. 18, A237 (2010).CrossRefGoogle Scholar
Garnett, E., Yang, P. D., Nano Letters 10 (3), 1082 (2010).CrossRefGoogle Scholar
Zhu, J., Hsu, C. M., Yu, Z. F., Fan, S. H., Cui, Y., Nano Letters 10 (6), 1979 (2010).CrossRefGoogle Scholar
Sai, H. and Kondo, M., J. of Appl. Phys. 105, 094511 (2009).Google Scholar
Vanacek, M., Babchenko, O., Purkrt, A., Holovsky, J., Neykova, N., Poruba, A., Remes, Z., Meier, J., Kroll, U., Appl. Phys. Lett 98, 16503 (2011).Google Scholar
Biswas, R., Xu, C., Opt. Exp. 19, (2011) A664.CrossRefGoogle Scholar
Curtin, B., Biswas, R., Dalal, V., Appl. Phys. Lett. 95, 231102 (2009).CrossRefGoogle Scholar
Biswas, R., Bhattacharya, J., Lewis, B., Chakravarty, N., Dalal, V., Sol. Energy Mater. Sol. Cells 94 (12), 2337 (2010).CrossRefGoogle Scholar
Pattnaik, S., Biswas, R., Dalal, V.L., Slafer, D., Ji, J., 35th IEEE Photovoltaic Specialists Conference, Honolulu, HI. 001483 (2010).Google Scholar
Bhattacharya, J., Chakravarty, N., Pattnaik, S., Slafer, W.D., Biswas, R., Dalal, V.L., Appl. Phys. Lett. 99, 131114 (2011)CrossRefGoogle Scholar
Isabella, O., Krc, J., Zeman, M., Appl. Phys. Lett. 97, 101106 (2010).CrossRefGoogle Scholar
Malgas, G. F., Adams, D., Nguyen, P., Wang, Y., Alford, T. L., Mayer, J. W., J. Appl. Phys. 90, 5591 (2001).CrossRefGoogle Scholar