Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-17T00:07:02.975Z Has data issue: false hasContentIssue false

Lithium Intercalation from Aqueous Solutions

Published online by Cambridge University Press:  16 February 2011

W. Li
Affiliation:
Department of Physics, Simon Fraser University Burnaby, B. C. V5A 1S6, Canada
J. R. Dahn
Affiliation:
Department of Physics, Simon Fraser University Burnaby, B. C. V5A 1S6, Canada
J. H. Root
Affiliation:
AECL Research, Chalk River Laboratories. Chalk River, Ontario KOJ 1JO, Canada
Get access

Abstract

Lithium can be intercalated into a variety of materials using aqueous electrochemical methods, provided that certain criteria are met. The materials must be stable in concentrated Li+ aqueous solution and Li intercalation must take priority over hydrogen intercalation. We use X-ray and neutron diffraction, as well as electrochemical methods to investigate if lithium or hydrogen is intercalated into certain hosts. For example, spinel Li2Mn2O4 can be made from spinel LiMn204 by intercalating one Li per mole in an electrochemical cell with 1 M LiOH electrolyte. If the electrochemical reduction is carried out further, beyond one electron per mole, Mn(OH)2 is then formed, as we prove using neutron diffraction. By carefully selecting electrode materials and electrolyte composition it is possible to make rechargeable lithium-ion cells with aqueous electrolytes. For example, LiMn204/γ-Li0.36MnO2 can be selected as an electrode couple, and5 M LiNO3 in water as an electrolyte to make lithium-ion cells with aqueous electrolytes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

references

[1] Nagaura, T. and Tozawa, K., Progress Batteries and Solar Cells, 9, 209 (1990).Google Scholar
[2] Sacken, U. von, Nodwell, E., Sundher, A. and Dahn, J. R., 7th International Meeting on Lithium Batteries, Boston, Massachusetts, U. S. A. May 15-20, page 12 (1994).Google Scholar
[3] Li, W., McKinnon, W. R. and Dahn, J. R., J. Electrochem. Soc. 141, 2310 (1994).Google Scholar
[4] Li, W., Dahn, J. R. and Wainwright, D. S., Science 264, 1115 (1994).Google Scholar
[5] Dahn, J. R. and Way, B. M., U. S. Patent 4,959,282 (1990).Google Scholar
[6] Dahn, J. R., Sleigh, A. K., Shi, Hang, Reimers, J. N., Zhong, Q. and Way, B., Electrochimca Acta 38, 1179 (1993).Google Scholar
[7] Thackeray, M. M., Rossouw, M. H., Gummow, R. J., Liles, D. C., Pearce, R., Kock, A. De, David, W. I. F., and Hull, S., Electrochimica Acta 38, 1259 (1993).Google Scholar
[8] Pannetier, J., Presented at the 8th International Battery Materials Symposium, Brussels, Belgium, May 9-13 (1993); JEC Battery Newsletter No. 6, Nov-Dec. (1993) p. 64.Google Scholar
[9] Handbook of Manganese Dioxides Battery Grade, Editors: Glover, D., Schumm, B. Jr., and Kozawa, A., the Int'l Battery Ass'n (IBA, Inc. ) 1989.Google Scholar
[10] Ohzuku, T., Kitagawa, M. and Hirai, T., J. Electrochem. Soc. 136, 3169 (1989).Google Scholar
[11] Dahn, J. R. and McKinnon, W. R., Solid State Ionics 23, 1 (1987).Google Scholar
[12] Dahn, J. R., Sacken, U. von, Juzkow, M. W., Al-Janaby, H., J. Electrochem. Soc. 138, 2207 (1991).Google Scholar
[13] Wyckoff, R. W. G., Crystal Structures (2nd edn), Vol.2, p. 312 Interscience, New York (1964).Google Scholar
[14] David, W. I. F., Goodenough, J. B., Thackeray, M. M., Thomas, M. G. S. R., Rev. Chim. Miner. 20, 636 (1983).Google Scholar