Hostname: page-component-84b7d79bbc-5lx2p Total loading time: 0 Render date: 2024-07-26T11:24:31.564Z Has data issue: false hasContentIssue false

Localized Donors in Gan: Spectroscopy Using Large Pressures

Published online by Cambridge University Press:  10 February 2011

C. Wetzel
Affiliation:
High Tech Research Center, Meijo University, Tempaku-ku, 468 Nagoya, Japan, Wetzel@meijo-u.ac.jp Materials Science Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA 94720, USA
H. Amano
Affiliation:
High Tech Research Center, Meijo University, Tempaku-ku, 468 Nagoya, Japan, Wetzel@meijo-u.ac.jp
I. Akasaki
Affiliation:
High Tech Research Center, Meijo University, Tempaku-ku, 468 Nagoya, Japan, Wetzel@meijo-u.ac.jp
T. Suski
Affiliation:
High Pressure Research Center, Warsaw, Poland
J. W. Ager
Affiliation:
Materials Science Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA 94720, USA
E. R. Weber
Affiliation:
Materials Science Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA 94720, USA
E. E. Haller
Affiliation:
Materials Science Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA 94720, USA
B. K. Meyer
Affiliation:
1. Physics Institute, Justus-Liebig-University Giessen, 35392 Giessen, Germany
Get access

Abstract

Properties of GaN and its alloys are strongly controlled by impurities and strain. Using large hydrostatic and biaxial pressure we identify the role of donor dopants and stress induced fields. The doping of Si and 0 as relevant representatives of group-IV and group-VI impurities are studied in Raman spectroscopy. For pressures above 20 GPa we find that oxygen induces a strongly localized gap state while Si continues to behave as a hydrogenic donor. Such a DX-like behavior of 0 indicates and corresponds to doping limitations in AIGaN alloys. The site specific (ON, SiGa) formation of a gap-state is attributed to bond strengths of the respective neighbors. In photoreflection of pseudomorphic GaInN we observe pronounced Franz-Keldysh oscillations corresponding to piezoelectric fields of 0.6 MV/cm. An observed redshift of the luminescence is found to originate in electric field induced tailstates. A reduced but similar effect is expected for GaN possibly explaining observations of persistent photoconductivity in a wide range of materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Chadi, D.J. and Chang, K.J., Phys. Rev. Lett. 61, 873 (1988); Phys. Rev. B 39, 10 063 (1989).Google Scholar
2. For a review see Mooney, P.M., J. Appl. Phys. 67, R1 (1990). K. Malloy and K. Khatchaturyan in Imperfections in I1/V materials, Semiconductors and Semimetals, 38 (Ed. E.R. Weber, Boston Academic Press Inc 1993) p. 235.Google Scholar
3. Suski, T., Mater. Sci. Forum 143–147, 975 (1994).Google Scholar
4. Wetzel, C., Suski, T., Ager, J.W. III, Weber, E.R., Hailer, E.E., Fischer, S., Meyer, B.K., Molnar, R.J., and Perlin, P., Phys. Rev. Lett. 78, 3923 (1997).Google Scholar
5. Wolk, J.A., Walukiewicz, W., Thewalt, M.L.W., Haller, E.E., Phys. Rev. Lett. 68, 3619 (1992).Google Scholar
6. Wetzel, C., Walukiewicz, W., and Ager, J.W. III, (Eds. Ponce, F., Moustakas, T.D., Akasaki, I., and Monemar, B.), Mater. Res. Soc. 449, 567 (1997).Google Scholar
7. Hirsch, M.T., Wolk, J.A., Walukiewicz, W., and Hailer, E.E., Appl. Phys. Lett. 71, 1098 (1997).Google Scholar
8. Johnson, C., Lin, J.Y., Jiang, H.X., AsifKhan, M., Sun, C.J., Appl. Phys. Lett. 68, 1808 (1996).Google Scholar
9. Li, J.Z., Lin, J.Y., Jiang, H.X., Khan, M.A., Chen, Q., J. Appl. Phys. 82, 1227 (1997).Google Scholar
10. Dabrowski, J. and Scheffler, M., Mater. Sci. Forum 83–87, 735 (1991).Google Scholar
11. Koide, N., Kato, H., Sassa, M., Yamasaki, S., Manabe, K., Hashimoto, M., Amano, H., Hiramatsu, K., and Akasaki, I., J. Cryst. Growth, 115, 639 (1991).Google Scholar
12. Pankove, J.I., Bloom, S., and Harbeke, G., RCA Rev. 36, 163 (1975).Google Scholar
13. Seifert, W., Franzheld, R., Butter, E., Sobotta, H., and Riede, V., Cryst. Res. Technol. 18, 383 (1983).Google Scholar
14. Molnar, R.J., Nichols, K.B., Maki, P., Brown, E.R., and Melngailis, I., Mater. Res. Soc. 378, 479 (1995).Google Scholar
15. Koynov, S., Topf, M., Fischer, S., Meyer, B.K., Radojkovic, P., Hartmann, E., and Liliental-Weber, Z., J. Appl. Phys. 82, 1890 (1997); M. Topf, S. Koynov, S. Fischer, I. Dirnstorfer, W. Kriegseis, W. Burkhardt, and B.K. Meyer, Mater. Res. Soc. 449, 307 (1997).Google Scholar
16. Gotz, W., Johnson, N.M., Chen, C., Liu, H., Kuo, C., and Imler, W., Appl. Phys. Lett. 68, 3144(1996).Google Scholar
17. Perlin, P., Gorczyca, I., Christensen, N.E., Grzegory, I., Teisseyre, H., and Suski, T., Phys. Rev. B 45, 13 307 (1992).Google Scholar
18. Wetzel, C., Walukiewicz, W., Hailer, E.E., Ager, J.W. III, Grzegory, I., Porowski, S., and Suski, T., Phys. Rev. B, 53, 1322 (1996).Google Scholar
19. Wetzel, C. and Ager, J. W., unpublishedGoogle Scholar
20. Takeutchi, T., Takeutchi, H., Sota, S., Sakai, H., Amano, H., and Akasaki, I., Jpn. J. Appl. Phys. 36, L 177 (1997).Google Scholar
21. Aspnes, D.E., Phys. Rev. B 10, 4228 (1974).Google Scholar
22. Takeutchi, T., Sota, S., Katsuragawa, M., Komori, M., Takeutchi, H., Amano, H., and Akasaki, I., Jpn. J. Appl. Phys. 36, L 382 (1997).Google Scholar
23. Chichibu, S., Azuhata, T., Sota, T., and Nakamura, S., Appl. Phys. Lett. 70, 2822 (1997).Google Scholar
24. Shmagin, I.K., Muth, J.F., Lee, J.H., Kolbas, R.M., Balkas, C.M., Sitar, Z., and Davis, D.F., Appl. Phys. Lett. 71, 455 (1997).Google Scholar
25. Perlin, P., Suski, T., Teisseyre, H., Leszczynski, M., Grzegory, I., Jun, J., Porowski, S., Boguslawski, P., Bernholc, J., Chervin, J.C., Polian, A., and Moustakas, T.D., Phys. Rev. Lett. 75, 296 (1995).Google Scholar
26. Wetzel, C., Suski, T., Ager, J.W. III, Walukiewicz, W., Fischer, S., and Meyer, B.K., 23rd Int. Conf on the Physics of Semiconductors, Berlin, Germany, July 21–26, 1996 (World Scientific, Singapore 1996) p. 2929.Google Scholar
27. Yoshida, S., Misawa, S., and Gonda, S., J. Appl. Phys. 53, 6844 (1982).Google Scholar
28. Harris, J.H. and Youngman, R.A., J. Mater. Res. 8, 154 (1993).Google Scholar
29. Lagerstedt, O. and Monemar, B., Phys. Rev., B 19, 3064 (1979).Google Scholar
30. Neugebauer, J. and Walle, C.G. Van de, Phys. Rev. B 50, 8067 (1994); 22rd Int. Conf. on the Physics of Semiconductors, Vancouver, Canada 15–19 Aug. 1994 (World Scientific, Singapore 1995) p. 2327.Google Scholar
31. Boguslawski, P., Briggs, E.L., and Bernholc, J., Phys. Rev. B 51, 17255 (1995).Google Scholar
32. Jenkins, D.W., Dow, J.D., and Tsai, Min-Hsiung, J. Appl. Phys. 72, 4130 (1992).Google Scholar
33. Park, C.H. and Chadi, D.J., Phys. Rev. B 55, 12995 (1997).Google Scholar
34. Mattila, T. and Nieminen, R.M., Phys. Rev. B 54, 1667, (1996).Google Scholar
35. Van de Walle, C., Stampfl, C., and Neugebauer, J., Proc. 2 d Int. Conf. on Nitride Semiconductors, Tokushima Japan, Oct 27–31, 1997, p. 386; C. Van de Walle and J. Neugebauer, Bull. Am. Phys. Soc. 42(1), 263 (1997).Google Scholar