Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-09-12T14:20:39.810Z Has data issue: false hasContentIssue false

Long Range Coulomb Effects on Hydrogen Debonding from Boron Acceptors in Silicon*

Published online by Cambridge University Press:  26 February 2011

R. A. Anderson
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
C. H. Seager
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
Get access

Abstract

Previous work has demonstrated that B-H pairs in silicon thermally dissociate obeying simple first order kinetics if theyare located in a region depleted of majority carriers. B.H debonding in equilibrium, however, is a slower, more complex process. We have investigated the dissociation of B.H pairs under a variety of equilibrium and non-equilibrium conditionsand have demonstrated that the dissociation process is strongly influenced by the local concentration of majority and minority carriers. In particular, we show that injection of minority carriers can markedly accelerate the dissociation process. A model is proposed which suggests that hydrogen released from an acceptor, while initially positive, must always beneutralized before escape is possible. This picture correctly describes the time dependence of debonding in equilibrium, and it predicts the enhanced debonding in forward biassed diodes provided the characteristic time for H charge conversionislong.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This work was supported by the U. S. Department of Energy under Contract # DE-AC04–76DP00789.

References

REFERENCES

1. Tavendale, A. J., Alexiev, D., and Williams, A. A., Appl. Phys. Lett. 47, 316 (1985).Google Scholar
2. Seager, C. H. and Anderson, R. A., Appl. Phys. Lett. 53, 1181 (1988).Google Scholar
3. Zundel, T. and Weber, J., Phys. Rev. B39, 13549 (1989).Google Scholar
4. Seager, C. H. and Anderson, R. A., Mat. Res. Soc. Symp. Proc. 138, 197 (1989).Google Scholar
5. Seager, C. H. and Anderson, R. A., Mat. Res. Soc. Symp. Proc. 163, 431 (1990).Google Scholar
6. Seager, C. H., Anderson, R. A., and Brice, D. K., J. Appl. Phys. 68, 3268 (1990).Google Scholar
7. Estle, T. L., Estreicher, S., and Marynick, D. S., Hyperfine Interact. 32, 637 (1986).Google Scholar
8. Estle, T. L., Estreicher, S., and Marynick, D. S., Phys. Rev. Lett. 58, 1547 (1987).Google Scholar
9. DeLeo, C. C. and Fowler, W. B., Bull. Am. Phys. Soc. 32, 841 (1987).Google Scholar
10. Deak, P., Snyder, L. C., Lindstrom, J. L., Corbett, J. W., Pearton, S. J., and Tavendale, A. J., Phys. Lett. A126, 427 (1988).Google Scholar
11. Deak, P., Snyder, L. C., and Corbett, J. W., Phys. Rev. B37, 6887 (1988).Google Scholar
12. Van de Walle, C. G., Bar-Yam, Y., and Pantelides, S. T., Phys. Rev. Lett. 60, 2761 (1988).Google Scholar
13. Pankove, J. I., Zanzucchi, P. J., Magee, C. W., and Lucovsky, G., Appl.Phys. Lett. 46, 421 (1985).Google Scholar
14. Bergman, K., Stavola, M., Pearton, S. J., and Hayes, T., Phys. Rev. B38, 9643 (1988).Google Scholar
15. Bech Nielsen, B., Andersen, J. U., and Pearton, S. J., Phys. Rev. Lett. 60, 321 (1988).Google Scholar
16. Marwick, A. D., Ohrlein, G. S., and Johnson, N. M., Phys. Rev. B36, 4539 (1987).Google Scholar
17. Zundel, T. and Weber, J., Mat. Res. Soc. Symp. Proc. 163, 443 (1990).Google Scholar
18. Zundel, T., Mesli, A., Muller, J. C., and Siffert, P., Appl. Phys. A48, 31 (1989).Google Scholar
19. Anderson, R. A. and Seager, C. H., Mat. Res. Soc. Symp. Proc. 163, 455 (1990).Google Scholar
20. Tavendale, A. J., Williams, A. A., and Alexiev, D., Appl. Phys. Lett. 47, 317 (1985).Google Scholar
21. Tavendale, A. J., Williams, A. A., Alexiev, D., and Pearton, S. J., Mat.Res. Soc. Symp. Proc. 59, 561 (1986).Google Scholar
22. Scharfetter, D. C., Solid State Elect. 8, 299 (1965).Google Scholar
23. Rhoderick, E. H., Metal Semiconductor Contacts, (Clarendon Press, Oxford, 1980) p. 121.Google Scholar
24. Hall, R. N., Phys. Rev. 87, 387 (1952);Google Scholar
24a. Schockley, W. and Read, W. T., Phys. Rev. 87, 835 (1952).Google Scholar
25. Seager, C. H. and Anderson, R. A., submitted to Applied Physics Letters.Google Scholar