Hostname: page-component-5c6d5d7d68-tdptf Total loading time: 0 Render date: 2024-08-28T03:15:32.262Z Has data issue: false hasContentIssue false

Long—Range Ordering in Rapidly Quenched Llo TiAl Compound Alloys

Published online by Cambridge University Press:  28 February 2011

S.H. Whang
Affiliation:
Department of Metallurgy & Materials Science Polytechnic University 333 Jay Street, Brooklyn, New York 11201
Z.X. Li
Affiliation:
Department of Metallurgy & Materials Science Polytechnic University 333 Jay Street, Brooklyn, New York 11201
D. Vujic
Affiliation:
Department of Metallurgy & Materials Science Polytechnic University 333 Jay Street, Brooklyn, New York 11201
Get access

Abstract

Rapid solidification has an effect on lattice parameters and long&range order parameter in L1o TiAl compound alloys. In these compounds rapid quenching from the liquid state significantly decreases the long—range order parameter while the tetragonal distortion c/a decreases as a result of rapid quenching. The lattice parameter change due to rapid quenching becomes pronounced with increasing aluminum concentration beyond the stoichiometric alloy composition. The recovery from the disordered state and the relaxation from the tetragonal distortion were found to be two different kinetic processes.

The long—range ordering requires low temperature and long annealing time in comparison with high temperature and short annealing time for the recovery of the tetragonal distortion.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. McAndrew, J.B. and Kessler, H.D., J. Metals, 206, 13481353 (1956).Google Scholar
2. Shechtman, D., Blackburn, M.J. and Lipsitt, H.A., Met. Trans. 5, 13751381 (1974).Google Scholar
3. Lipsitt, H., Shechtman, D. and Schafrik, R.E., Met. Trans. A, 6A, 19911996 (1975).Google Scholar
4. Sastry, S.M.L. and Lipsitt, H.A., 8A, 299308 (1977).CrossRefGoogle Scholar
5. Rowe, R.G., Sutliff, J.A., and Koch, E.F., in Titanium Rapid Solidification Technology, pp. 239248, Ed. Froes, F.H. and Eylaon, D., (The Metallurgical Society, Inc. 1986).Google Scholar
6. Huang, S.C., Hall, E.L. and Gigliotti, M.F.X., See the proceedings of this symposium.Google Scholar
7. Duwez, P. and Taylor, J.L., 5 Metals, Trans. AIME 4, pp. 7071 (1952).Google Scholar
8. Baker, I., Ichishita, F.S., Surprenant, V.A. and Schulson, E.M., Metallography, 17, 299314 (1984).Google Scholar
9. Chaterjee, D.K. and Mendiratta, M.G., J. Met., 33, 5 (1981).Google Scholar
10. Inoue, A., Tomioku, H. and Masumoto, T., J. Met. Sci. Lett., 1, 377380 (1982).Google Scholar
11. Massalski, T.B., Murray, J.L., Bennett, L.H. and Baker, H., in Binary Alloy Phase Diagram, (ASM, Metals Park, OH 44073 - 1986) p. 175.Google Scholar
12. Vujic, D., Li, Z.X. and Whang, S.H., manuscripts to be submitted to Met. Trans. A (1987).Google Scholar
13. Thomas, G. and Willens, R.H., Acta Met, 12, 191196 (1964).CrossRefGoogle Scholar
14. Baker, J.C. and Cahn, J.W., Acta Met, 17, 575578 (1969).CrossRefGoogle Scholar
15. Tastogi, P.K. and Mukerjee, K., Met. Trans. 1, 21152117 (1970).CrossRefGoogle Scholar
16. Liu, C.T. and White, C.L., in Mat. Res. Soc. Symp. Proc. on Ordered Intermetallic Alloys, Ed. Koch, C.C., Liu, C.T. and Stoloff, N.S., pp. 365380, Vol. 39 (1985).Google Scholar