Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-22T18:18:09.511Z Has data issue: false hasContentIssue false

Low Driving Voltage of Organic Light-Emitting Diodes Using p-Doping Starburst Amine as Hole Transporter

Published online by Cambridge University Press:  21 March 2011

Xiang Zhou
Affiliation:
Institut für Angewandte Photophysik, Technische Universität Dresden, D-01062 Dresden, Germany
Andreas Nollau
Affiliation:
Institut für Angewandte Photophysik, Technische Universität Dresden, D-01062 Dresden, Germany
Jan Blochwitz
Affiliation:
Institut für Angewandte Photophysik, Technische Universität Dresden, D-01062 Dresden, Germany
Martin Pfeiffer
Affiliation:
Institut für Angewandte Photophysik, Technische Universität Dresden, D-01062 Dresden, Germany
Torsten Fritz
Affiliation:
Institut für Angewandte Photophysik, Technische Universität Dresden, D-01062 Dresden, Germany
Karl Leo
Affiliation:
Institut für Angewandte Photophysik, Technische Universität Dresden, D-01062 Dresden, Germany
Get access

Abstract

We investigate the electrical properties and the OLED application of controlledly doped amorphous hole transporters. Thin films of starburst amine, 4,4',4“-tris(N,N-diphenyl- amino) triphenylamine (TDATA), doped by a fully fluorinated form of tetracyano- quinodimethane (F4-TCNQ), are characterized in situ by temperature dependent conductivity and Seebeck measurements. The conductivity and hole concentration increase with dopant concentration and are many orders of magnitude higher than those of undoped material. OLED devices with the layer sequence ITO/TDATA(200 nm)/Alq3(65 nm)/LiF(1 nm)/Al were fabricated. The use of p-doped TDATA thin films with high bulk conductivity and hole concentration reduces the resistance of the devices and leads to a thinner space charge layer which facilitates injection of holes from the ITO anode.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tang, C. W., VanSlyke, S. A., Appl. Phys. Lett. 51, 913 (1987).Google Scholar
2. Tang, C. W., VanSlyke, S. A., Chen, C. H., J. Appl. Phys. 65, 3610 (1989).Google Scholar
3. Naka, S., Shinno, K., Okada, H., Onnagawa, H., Miyashita, K., Jpn. J. Appl. Phys. 33 Part 2, L1772 (1994).Google Scholar
4. Hosokawa, C., Higashi, H., Nakamura, H., Kusumoto, T., Appl. Phys.Lett. 67, 3853 (1995).Google Scholar
5. Shi, J., Tang, C. W., Appl. Phys. Lett. 70, 1665 (1997).Google Scholar
6. Bulovic, V., Shoustikov, A., Baldo, M. A., Bose, E., Kozlov, V. G., Thompson, M. E., Forrest, S. R., Chem. Phys. Lett. 287, 455 (1998).Google Scholar
7. Kido, J., Iizumi, Y., Appl. Phys. Lett. 73, 3853 (1998).Google Scholar
8. Hamada, Y., Kanno, H., Tsujioka, T., Takahashi, H., Usuki, T., Appl. Phys. Lett. 75, 1682 (1999).Google Scholar
9. Sakamoto, G., Adachi, C., Koyama, T., and Taniguchi, Y., Merritt, C. D., Murata, H., Kafafi, Z. H., Appl. Phys.Lett. 75, 766 (1999).Google Scholar
10. Gao, Z. Q., Lee, C. S., Bello, I., Lee, S. T., Chen, R. M., Luh, T.Y., Shi, J., Tang, C. W., Appl. Phys. Lett. 74, 865 (1999).Google Scholar
11. Yamaguchi, M., Nagatomo, T., Thin Solid Films 363, 21 (2000).Google Scholar
12. Choong, V., Shi, S., Curless, J., Shieh, C. L., Lee, H. C., So, F., Shen, J., Yang, J., Appl. Phys. Lett. 75, 172 (1999).Google Scholar
13. Choong, V., Shi, S., Curless, J., So, F., Appl.Phys.Lett. 76, 958 (2000).Google Scholar
14. Popovic, Z. D., Xie, S., Hu, N., Hor, A., Fork, D., Anderson, G., Tripp, C., Thin Solid Films 363, 6 (2000).Google Scholar
15. Abkowitz, M., and Pai, D. M., Phil. Mag. B 53, 193 (1986).Google Scholar
16. Bach, U., Lupo, D., comte, P., Moser, J. E., Weissörtel, F., Salbeck, J., Spreitzer, H., and Grätzel, M., Nature 395, 583 (1998).Google Scholar
17. Kido, J., Matsumoto, T., Appl. Phys. Lett. 73, 2866 (1998).Google Scholar
18. Yamamori, A., Adachi, C., Koyama, T., Taniguchi, Y., Appl. Phys. Lett. 72, 2147 (1998).Google Scholar
19. Blochwitz, J., Pfeiffer, M., Fritz, T., Leo, K., Appl. Phys. Lett. 73, 729 (1998).Google Scholar
20. Pfeiffer, M., Beyer, A., Fritz, T., Leo, K., Appl. Phys. Lett. 73, 3202 (1998).Google Scholar
21. Shirota, Y., Kobata, T., Noma, N., Chem. Lett. 1145 (1989).Google Scholar
22. Zhou, X., Pfeiffer, M., Blochwitz, J., Werner, A., Nollau, A., Fritz, T., Leo, K., Appl. Phys. Lett. 78, 410 (2001).Google Scholar
23. Zhou, X., Blochwitz, J., Pfeiffer, M., Nollau, A., Fritz, T., Leo, K., (unpublished) Google Scholar
24. Zhou, X., He, J., Liao, L. S., Lu, M., Ding, X. M., Hou, X. Y., Zhang, X. M., He, X. Q., Lee, S. T., Adv. Mater. 12, 265 (2000).Google Scholar
25. Shirota, Y., Kuwabara, Y., Inada, H., Wakimoto, T., Nakada, H., Yonemoto, Y., Kawami, S., Imai, K., Appl. Phys. Lett. 65, 807 (1994).Google Scholar
26. Shirota, Y., Kuwabara, Y., Okuda, D., Okuda, R., Ogawa, H., Inada, H., Wakimoto, T., Nakada, H., Yonemoto, Y., Kawami, S., Imai, K., J. Lumin. 72–74, 985 (1997).Google Scholar
27. Giebeler, C., Antoniadis, H., Bradley, D. D. C., Shirota, Y., J. Appl. Phys. 85, 608 (1999).Google Scholar
28. Hung, L. S., Tang, C. W., Mason, M. G., Appl. Phys. Lett. 70, 152 (1997).Google Scholar
29. Shirota, Y., Proc. SPIE 3148, 186 (1997).Google Scholar