Hostname: page-component-7bb8b95d7b-l4ctd Total loading time: 0 Render date: 2024-09-13T04:21:52.033Z Has data issue: false hasContentIssue false

Low Temperature Growth of Silicon Dioxide Thin Films by UV Photo-oxidation

Published online by Cambridge University Press:  11 February 2011

Atsuyuki Fukano
Affiliation:
Photonics Research Institute, National Institute of Advanced Industrial Science and Technology, 1–1–1 Umezono, Tsukuba, Ibaraki 305–8568, Japan
Hiroyuki Oyanagi
Affiliation:
Photonics Research Institute, National Institute of Advanced Industrial Science and Technology, 1–1–1 Umezono, Tsukuba, Ibaraki 305–8568, Japan
Get access

Abstract

The low-temperature growth of thin SiO2 layers for gate insulators in very large-scale integrated (VLSI) circuits is becoming an urgent topic of silicon technology. In contrast, to conventional thermal oxidization processes (T>900°C), ultraviolet (UV) photo-oxidation of silicon technology is a promising approach for low-temperature growth of silicon dioxide thin films. We have grown silicon dioxide thin films at low temperature (T<500 °C) using an excimer lamp with various wavelengths and evaluated the quality of thin SiO2 layers as well as the SiO2–Si interface. We found that the SiO2 layers (t<5 nm) grown by UV photo-oxidation show significant differences in physical properties, such as density profile, from those of thermal oxidization, i.e., the higher average density 2.23 g/cm3 and more constant distribution, making the SiO2–Si interface region, so-called “transition layer” less eminent. Superior characteristics of ultra-thin SiO2 layer grown by UV photo-oxidation are demonstrated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zhang, Y. and Boyd, I.W., Appl. Surf. Sci. 186, 64 (2002).Google Scholar
2. Kaliwoh, N. et al., Appl. Surf. Sci. 168, 288 (2000).Google Scholar
3. Zhang, J. F., et al., Semicond. Sci. Technol. 5, 824 (1990).Google Scholar
4. Nagasawa, H., et al., Jpn. J. Appl. Phys. 34, L1103 (1995).Google Scholar
5. Godet, C., Etemadi, R. and Clerc, C., Appl. Phys. Lett. 69, 3845 (1996).Google Scholar
6. Fuyuki, T., Muranaka, S. and Matsunami, H., Appl. Surf. Sci. 117/118, 123 (1997).Google Scholar
7. Tabakomori, M. and Ikoma, H., Jpn. J. Phys. 36, 5409 (1997).Google Scholar
8. Kim, J. J., Park, H. H. and Hyun, S. H., Thin Solid Films 384, 236 (2001).Google Scholar
9. Ueno, T., et al., Jpn. J. Appl. Phys. 39, L327 (2000).Google Scholar
10. Kazor, A. and Boyd, Ian W., Appl. Phys. Lett. 63, 2871 (1993).Google Scholar
11. Kazor, A. and Boyd, I. W., J. Appl. Phys. 75, 227 (1994).Google Scholar
12. Kazor, A., Gwillam, R. and Boyd, I. W., Appl. Phys. Lett. 65, 412 (1994).Google Scholar
13. Nakamura, J., Niu, H. and Kishino, S., Jpn. J. Appl. Phys, 32, 699 (1993).Google Scholar
14. Nishiguchi, T., et al., Appl. Phys. Lett. 81, 2190 (2002).Google Scholar
15. Eliasson, B. and Gellert, B., J. Appl. Phys. 68, 2026 (1990).Google Scholar
16. Tarasenko, V. F., et al., Appl. Phys. A 69, S327 (1999).Google Scholar
17. Zhang, J. Y. and Boyd, I. W., Appl Phys. B 71, 177 (2000).Google Scholar
18. Kogelschatz, U. et al., Appl. Surf. Sci. 168, 29 (2000).Google Scholar
19. Gilmore, F.R., J. Quant. Spectrosc. Radiat. Transfer. 5, 369 (1965).Google Scholar