Hostname: page-component-7bb8b95d7b-lvwk9 Total loading time: 0 Render date: 2024-09-11T13:19:01.625Z Has data issue: false hasContentIssue false

Low Temperature Plasma Anodization of Silicides

Published online by Cambridge University Press:  21 February 2011

J. Perriere
Affiliation:
Groupe de Physique des Solides de l'Ecole Normale Supérieure, Université Paris VII, Tour 23, 2 Place Jussieu, 75251 Paris Cedex 05- FRANCE
J. Siejka
Affiliation:
Groupe de Physique des Solides de l'Ecole Normale Supérieure, Université Paris VII, Tour 23, 2 Place Jussieu, 75251 Paris Cedex 05- FRANCE
A. Laurent
Affiliation:
Groupe de Physique des Solides de l'Ecole Normale Supérieure, Université Paris VII, Tour 23, 2 Place Jussieu, 75251 Paris Cedex 05- FRANCE
J. P. Enard
Affiliation:
Groupe de Physique des Solides de l'Ecole Normale Supérieure, Université Paris VII, Tour 23, 2 Place Jussieu, 75251 Paris Cedex 05- FRANCE
F. D'heurle
Affiliation:
IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598
Get access

Abstract

In the first time, hundreds nm thick oxide layers were formed by room temperature plasma anodization of some refractory disilicides. Nuclear microanalysis and Rutherford backscattering techniques were used to study the anodic oxidation of various metal silicides (Hf, Ti and Zr) in a multipolar oxygen plasma set-up. We have found that the low temperature (<100 °C) plasma anodization kinetics of Hf or Zr silicides is two orders of magnitude higher than that of Ti silicide although their thermodynamic and physicochemical behaviour are very similar. 200 nm thick Hf (or Zr) and Si mixed oxide layers have been obtained in one hour plasma anodization. Analysis of RBS spectra indicates that the ratio of Si to metal cation concentration in the bulk of oxide grownis the same than the silicide (HfSi2 or ZrSi2), while in the near surface region of oxide (20 to 30 nm) there is an enrichment in metallic oxide leading to a Si to Hf (or Zr) concentration ratio equal to unity. The spectacular difference between the anodization rates in oxygen plasma of Hf (and Zr) silicides comparing to Ti silicides can be related to the catalytic effect on plasma anodization of the Hf and Zr oxides.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1- Tu, K.N. and Mayer, J.W., “Thin Films - Interfaces and Reactions”, edited by Poate, J.M., Tu, K.N. and Mayer, J.W., (Wiley, New York 1978).Google Scholar
2- Zirinsky, S., Hammer, W., d'Heurle, F. and Baglin, J., Appl. Phys. Lett., 33, 76 (1978).Google Scholar
3- d'Heurle, F., Irene, E.A. and Ting, C.Y., Appl. Phys. Lett., 42, 361 (1983).Google Scholar
4- Murarka, S.P., riaser, D.B., Lindenberger, W.S. and Sinha, A.K., J. Appl. Phys., 51, 3241 (1981).Google Scholar
5- Murarka, S.P. and.Chang, C.C., Appl. Phys. Lett., 37, 639 ( 1980).Google Scholar
6- Gourrier, S., Dimitriou, P., Theeten, J.B., Perri~re, J., Siejka, J., Croset, M., Appl. Phys. Lett., 38, 33 (1981).Google Scholar
7- Perrière, J., Siejka, J., Vilato, P., Laurent, A., Enard, J.P. and Meunier, F., to be submitted to J. Appl. Phys.Google Scholar
8- Chang, R.P.H., Siejka, J., Perrière, J. and Croset, M., 3rd Symp. Plasma Processing, Electrochem. Soc., 82–6, 38 (1982).Google Scholar
9- Perrière, J., Siejka, J. and Chang, R.P.H., Thin Solid Film, 95, 309 (1982).Google Scholar
10- Limpaecher, K. and.Mackenzie, K.R., Rev. Sci. Instrum., 44, 276 (1973).CrossRefGoogle Scholar
11- Lang, A. and Hershlkwitz, N., J. Appl. Phys., 49, 4707 (1978).Google Scholar
12- Amsel, G., Nadai, J.P., d'Artemare, E., David, D., Girard, E. and Moulin, J., Nucl. Instrum. Methods, 92, 481 (1971).Google Scholar
13- Friedel, P., Gourrier, S. and Dimitriou, P., J. Electrochem. Soc., 129, 18 (1981).Google Scholar
14- Siejka, J. and Perrière, J., accepted for presentation at MRS meeting, Boston, November 1984.Google Scholar
15- Kraitchman, J., J. Appl. Phys., 38, 4323 (1967).Google Scholar
16- Perrière, J. and Siejka, J., unpublished work.Google Scholar
17- Davies, J.A., Domeij, B., Pringle, J.P.S. and Brown, F., J. Electrochem. Soc., 112, 675 (1965).Google Scholar
18- Mackintosh, W.D. and Plattner, H.H., J. Electrochem. Soc., 124, 396 (1977).Google Scholar
19- Pringle, J.P.S., Electrochem. Soc. Ext. Abstr., 78-1, 144, Seattle, May 1978.Google Scholar