Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-16T19:27:47.744Z Has data issue: false hasContentIssue false

Low-cost 13.56MHz Rectifier Based on Organic Diode

Published online by Cambridge University Press:  24 January 2012

Hong Wang
Affiliation:
Laboratory of Nano-Fabrication and Novel Devices Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing China School of Physical Science and Technology, Lanzhou University, Lanzhou, China
Zhuoyu Ji
Affiliation:
Laboratory of Nano-Fabrication and Novel Devices Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing China
Liwei Shang
Affiliation:
Laboratory of Nano-Fabrication and Novel Devices Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing China
Yingping Chen
Affiliation:
Laboratory of Nano-Fabrication and Novel Devices Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing China
Congyan Lu
Affiliation:
Laboratory of Nano-Fabrication and Novel Devices Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing China
Dongmei Li
Affiliation:
Laboratory of Nano-Fabrication and Novel Devices Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing China
Yingquan Peng
Affiliation:
School of Physical Science and Technology, Lanzhou University, Lanzhou, China
Ming Liu
Affiliation:
Laboratory of Nano-Fabrication and Novel Devices Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing China
Get access

Abstract

In this paper, low-cost rectifier based on an organic diode for use in organic radio frequency identification (RFID) tags is proposed. Pentacene is the electroactive layer, with 7,7,8,8-tetracyanoquinodimethane (TCNQ) modified low-cost copper (Cu) and aluminum (Al) as the Ohmic and Schottky contacts, respectively. Hole injection barrier between Cu and pentacene can be decreased by forming the self-assembled layers of Cu-TCNQ. The diode shows a high rectification ratio of approximately 2×106 at 5V and the organic diode based rectifier circuit generated a dc output voltage of approximately 2V at 13.56MHz, using an input ac signal with zero-to-peak voltage amplitude of 5 V. The results indicate that chemical modification of the low-cost electrodes could be an efficient way toward low-cost high performance organic electronics devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kane, M. G., Campi, J., Hammond, M. S., Cuomo, F. P., Greening, B., Sheraw, C. D., Nichols, J. A., Gundlach, D. J., Huang, J. R., Kuo, C. C., Jia, L., Klauk, H., and Jackson, T. N., IEEE Electron Device Lett., 21, 534 (2000).Google Scholar
2. Yan, H., Zheng, Y., Blache, R., Newman, C., Lu, S. F., Woerle, J., and Facchetti, A., Adv. Mater., 20, 3393 (2008).Google Scholar
3. Ju, S., Li, J., Liu, J., Chen, P. C., Ha, Y. G., Ishikawa, F., Chang, H., Zhou, C., Facchetti, A., Janes, D. B., and Marks, T. J., Nano Lett., 8, 997 (2008).Google Scholar
4. Lin, H. T., Pei, Z., Chen, J. R., and Chan, Y. J., IEEE Electron Device Lett., 30, 18 (2009).Google Scholar
5. Rotzoll, R., Mohapatra, S., Olariu, V., Wenz, R., Grigas, M., and Dimmler, K., Appl. Phys. Lett.., 88, 123502 (2006).Google Scholar
6. Cobb, B., Jeong, Y. T., and Dodabalapur, A., Appl. Phys. Lett., 92, 103302 (2008).Google Scholar
7. Ma, L. P., Ouyang, J. Y., and Yang, Y., Appl. Phys. Lett., 84, 4786 (2004).Google Scholar
8. Steudel, S., Myny, K., Arkhipov, V., Deibel, C., Vusser, S. D., Genoe, J., and Heremans, P., Nat. Mater., 4, 597 (2005).Google Scholar
9. Ai, Y., Gowrisanker, S., Jia, H. P., Trachtenberg, I., Vogel, E., Wallace, R. M., Gnade, B. E., Barnett, R., Stiegler, H., and Edwards, H., Appl. Phys. Lett., 90, 262105 (2007).Google Scholar
10. Myny, K., Steudel, S., Vicca, P., Genoe, J., and Heremans, P., Appl. Phys. Lett., 93, 093305 (2008).Google Scholar
11. Steudel, S., Myny, K., Vicca, P., Cheyns, D., Genoe, J., and Heremans, P., IEDM Tech. Dig., 93 (2008)Google Scholar
12. Liu, Y. L., Li, H. X., Tu, D. Y., Ji, Z. Y., Wang, C. S., Tang, Q. X., Liu, M., Hu, W. P., Liu, Y. L., and Zhu, D. B., J. Am. Chem. Soc., 128, 12917 (2006).Google Scholar
13. Lefenfeld, M., Blanchet, G., and Rogers, J.A., Adv. Mater. 15, 1188 (2003).Google Scholar
14. Zhen, L., Shang, L., Liu, M., Tu, D., Ji, Z., Liu, X., Liu, G., and Wang, H., Appl. Phys. Lett., 93, 203302 (2008).Google Scholar