Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-09-12T10:19:27.712Z Has data issue: false hasContentIssue false

Low-Temperature Growth and Characterization of InP Grown by Gas-Source Molecular-Beam Epitaxy

Published online by Cambridge University Press:  15 February 2011

B. W. Liang
Affiliation:
Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093-0407
Y. He
Affiliation:
Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093-0407
C. W. Tu
Affiliation:
Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093-0407
Get access

Abstract

Low-temperature (LT) growth of InP by gas-source molecular-beam epitaxy has been studied. Contrary to GaAs, InP grown at low temperature (from 200°C to 410°C) shows ntype, low-resistivity properties. The electron concentration changes dramatically with growth temperature. A model of P antisite defects formed during LT growth was used to explain this experimental result. Ex-situ annealing can increase the resistivity, but only by a factor of about 6. Heavily Be-doped LT InP also shows n-type property. We believe this is the first report of an extremely high concentration of donors formed in LT InP and n-type doping by Be in III–V compounds.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Smith, F. W., Calawa, A. R. and Chen, C., IEEE Electron Device Letters EDL–9, 77 (1988).10.1109/55.2046Google Scholar
[2]Puechner, R. A., Johnson, D. A., Shiralagi, K. T., Gerber, D. S., Droopad, R. and Maracas, G. N., J. Crystal Growth 111, 43 (1991).Google Scholar
[3]Melloch, M. R., Mahalingam, K., Otsuka, N., Woodall, J. M. and Warren, A. C., J. Crystal Growth 113, 9 (1991).Google Scholar
[4]Warren, A. C., Katzenellenbogen, N., Grischkowsky, D., Woodall, J. M., Melloch, M. R. and Otsuka, N., Appl. Phys. Lettters 58, 1512 (1991).Google Scholar
[5]Smith, F. W., Le, H. W., Diadiuk, V., Hollis, M. A., Calawa, A. R., Gupta, S., Frankel, M., Dykaar, D. R., Mourou, G. A. and Hsiang, T. Y., Appl. Phys. Letters 5A, 890 (1989).Google Scholar
[6]Kaxninska, M. and Weber, E. R., Proc. 20th Inter. Conf. on the Physics of Semiconductors (ICPS) 1990.Google Scholar
[7]Melloch, M. R., Otsuka, N., Woodall, J. M., Warren, A. C. and Freeout, T. L., Appl. Phys. Lett. 57 1531 (1990).Google Scholar
[8]Liang, B. W., Ha, K., Zhang, J., Chin, T. P. and Tu, C. W., SPIE Proc. 1285, 116 (1990).10.1117/12.20813Google Scholar
[9]Panish, M. B., Hamm, R. A., Ritter, D., Luftman, H. S. and Cotell, C. M., J. Crystal Growth 112, 343 (1991).Google Scholar
[10]Rao, E. V. K., Alaoui, F., Gao, Y., Benchimol, J. L. and Thibierge, H., Semiconductor Sci. & Tech. 6, 125 (1991).Google Scholar
[11]Calawa, A. R., Appl. Phys. Lett. 15, 1020 (1978).Google Scholar
[12]Pearton, S. J., Dautremont-Smoth, W. C., Chevallier, J., Tu, C. W., and Cummings, K. D., J. Appl. Phys. 59, 2821 (1986).10.1063/1.336964Google Scholar
[13]Pan, N., Bose, S. S., Kim, M. H., Stillmen, G. E., Chambers, F., Devane, G., Ito, C. R., and Feng, M., Appl. Phys. Lett. 51, 596 (1987).Google Scholar
[14]Hirayama, H. and Tatsumi, T., Appl. Phys. Lett. 54 1561 (1989).Google Scholar
[15]Dautremont-Smith, W. C., Lopata, J., Pearton, S. J., Koszi, L. A., Stavola, M., and Swaminathan, V., J. Appl. Phys. 66, 1993 (1989).sGoogle Scholar