Hostname: page-component-84b7d79bbc-dwq4g Total loading time: 0 Render date: 2024-07-30T06:17:27.870Z Has data issue: false hasContentIssue false

LPCVD Deposition Techniques for Nanograin sub-10nm Polysilicon Ultra-thin Films

Published online by Cambridge University Press:  15 March 2011

Serge Ecoffey
Affiliation:
Swiss Federal Institute of Technology, Electronic Laboratories, CH-1015 Lausanne, Switzerland
Didier Bouvet
Affiliation:
Swiss Federal Institute of Technology, Electronic Laboratories, CH-1015 Lausanne, Switzerland
Adrian M. Ionescu
Affiliation:
Swiss Federal Institute of Technology, Electronic Laboratories, CH-1015 Lausanne, Switzerland
Pierre Fazan
Affiliation:
Swiss Federal Institute of Technology, Electronic Laboratories, CH-1015 Lausanne, Switzerland
Get access

Abstract

This paper investigates the limits of a low pressure chemical vapour deposition (LPCVD) technique for the deposition of a nanometre scale ultra-thin polysilicon (poly-Si) film with sub-10nm grain sizes. Three different processes using pure silane (SiH4) in a standard horizontal hot-wall reactor are presented: (i) a direct poly-Si deposition, (ii) a Hemispherical Silicon Grain (HSG) deposition and (iii) an amorphous silicon (a-Si) deposition followed by a thermal crystallization anneal. The direct poly-Si deposition gives a minimum film thickness achievable around 20 nm with grain sizes ranging from 20 to 30 nm. The HSG deposition process leads to the formation of grains with diameters varying from 5 to 50 nm and heights ranging from 5 to 20 nm. The best results are obtained with the third process (a-Si / crystallization), which allows the formation of 6 nm poly-Si thick films with grain sizes ranging from 10 to 20 nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. The International Technology Roadmap for Semiconductors: Technology needs (1999 edition).Google Scholar
2. Yano, K., Ishii, T., Hashimoto, T., Kobayashi, T., Murai, F. and Seki, K., IEEE Trans. Electron Devices 41, 1628 (1994).Google Scholar
3. Tiwari, S., Rana, F., Hanafi, H., Hartstein, A., Crabbé, E. F. and Chan, K., Appl. Phys. Lett. 68, 1377 (1995).Google Scholar
4. Nakajima, A., Futatsugi, T., Kosemura, K., Fukano, T. and Yokoyama, N., Appl. Phys. Lett. 70, 1742 (1997).Google Scholar
5. Kim, I., Han, S., Han, K., Lee, J. and Shin, H., IEEE Electron Device Letters 20, 630 (1999).Google Scholar
6. Likharev, K., Proceedings of the IEEE 87, 606 (1999).Google Scholar
7. Anghel, C., Hefyene, N., Ionescu, A. M., Declerq, M., Tringe, J. W. and Plummer, J. D., MRS Proceedings 638 F12.4 (2000).Google Scholar
8. Ibok, E. and Garg, S., J. Electrochem. Soc. 140, 2927 (1993).Google Scholar
9. Sallese, J. M., Ils, A., Bouvet, D. and Fazan, P., J. App. Phys. 88, 5751 (2000).Google Scholar
10. Sakai, A. and Tatsumi, T., Appl. Phys. Lett. 61, 159 (1992).Google Scholar
11. Baron, T., Martin, F., Mur, P., Wyon, C. and Dupuy, M., Journal of Crystal Growth 209, 1004 (2000).Google Scholar
12. Miyazaki, S., Hamamoto, Y., Yoshida, E., Ikeda, M. and Hirose, M., Thin Solid Films 369, 55 (2000).Google Scholar
13. Hatalis, M. K. and Greve, D. W., J. App. Phys. 63, 2260 (1988).Google Scholar