Hostname: page-component-7bb8b95d7b-dtkg6 Total loading time: 0 Render date: 2024-09-16T19:48:01.524Z Has data issue: false hasContentIssue false

Magnetic Alignment of Amorphous Coatings of GD:123

Published online by Cambridge University Press:  26 February 2011

Joanna McKittrick
Affiliation:
University of California, San Diego, Materials Science Program, La Jolla, CA 92093
Ramiro Contreras
Affiliation:
University of California, San Diego, Materials Science Program, La Jolla, CA 92093
Get access

Abstract

High Tc superconducting Gd-Ba-Cu-O materials were synthesized via the acetate precursor process. Aqueous solutions of < 0.6 M of metal cations were applied to substrates of yttria stabilized zirconia. Homogeneous films were applied to the substrates by use of the spin coating technique. The substrates were fired in air at 500°C in between each applied coat. After coating the substrates with 10–30 coats, they were crystallized by heating to 900°C in Ar or O2 with or without a 1 T magnetic field. The applied magnetic field was found to produce c-axis alignment for the thinner coats. Annealing in argon produced alignment but the effect was less pronounced than annealing in oxygen. Substrates with 30 coats were not aligned for either environment.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Dinger, T. R., Worthington, T. K., Gallagher, W. J. and Sandstrom, R. L., Phys. Rev. Lett., 58 2687 (1987).Google Scholar
[2] Jin, S., Sherwood, R. C., Van Dover, R. B., Tiefel, R. B. and Johnson, D. W., Appl. Phys. Lett., 51 203 (1987).Google Scholar
[3] Yamada, Y., Fukushima, N., Nakayama, S., Yoshino, H., and Murase, S., Jpn. J. Appl. Phys., 26 1865 (1987).Google Scholar
[4] Takita, K., Akinaga, H., Katoh, H., Uchino, T., Ishigaki, T. and Asano, H., Jpn. J. Appl. Phys., 26 L1323 (1987).Google Scholar
[5] Grader, G. S., O'Bryan, H. M. and Rhodes, W. W., Appl. Physl. Lett., 52 1831 (1988).Google Scholar
[6] Jin, S., Tiefel, T. H., Sherwood, R. C., Davis, M. E., van Dover, R. B., Kammlott, G. W., Fastnacht, R. A. and Keith, H. D., Appl. Phys. Lett., 52 2074 (1988).Google Scholar
[7] Chaudhari, P. et al., Phys. Rev. Lett., 58 2864 (1987).Google Scholar
[8] Farrell, D. E., Chandrasekhar, B. S., DeGuire, M. R. and Gambino, R. J., Phys. Rev. Lett., 58 2684 (1987).Google Scholar
[9] Ferreira, J. M., Maple, M. B., Zhou, H., Hake, R. R., Lee, B. W., Seaman, C. L., Kuric, M. V. and Guertin, R. P., Appl. Phys. A, 42 105110 (1988).Google Scholar
[10] Lee, B. W., Ferreira, J. M., Hake, R. R., Maple, M. B., Seaman, C. L. and Zhou, H., Appl Phys. A, 42 105 (1988).Google Scholar
[11] Lusnikov, A., Miller, L. L., McCallum, R. O., Mitra, S., Lee, W. C. and Johnson, D. C., to be published in J. Appl. Phys.Google Scholar
[12] Arendt, R. H., Gaddipati, A. R, Garbauskas, M. F., Hall, E. L., Hart, H. R., Lay, K. W., Livingston, J. D., Luborsky, F. E. and Schilling, L. L., GE Corporate Research and Development, Technical Information Series, Nov. 1987.Google Scholar
[13] Feenstra, R., Lindemer, T. B., Budai, J. D. and Galloway, M. D., J. Appl Phys., 69 65696585 (1991)Google Scholar
[14] Phillips, J. M., Siegal, M. P., Hou, S. Y., Tiefel, T. H. and Marshall, J. H., Proc. MRS, Spring 1992 Google Scholar
[15] Kumagai, T., Kundo, W., Yodota, H., Minamiue, H. and Mizuta, S., Chem. Lett., 3 551 (1988).Google Scholar
[16] Chiang, Y. -M., Furcone, S., Ikeda, J. and Rudman, D., Mat. Res. Soc. Symp. Proc, 99 307 (1988).Google Scholar
[17] Cooper, E., Frisch, M., Giess, E., Gupta, A., Hussey, B., O'Sullivan, E., Raider, S. and Scilla, G., Mat. Res. Soc. Symp. Proc, 99 165 (1988).Google Scholar
[18] Chu, C. -T. and Dunn, B., Comm. Am. Ceram. Soc, C377 (1987)Google Scholar