Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-22T12:18:36.974Z Has data issue: false hasContentIssue false

Mass Spectrometric Studies of Pulsed Laser Ablation: Existence of Rydberg State Atoms

Published online by Cambridge University Press:  21 February 2011

Robert Leuchtner*
Affiliation:
Dept. of Physics, University of New Hampshire, Durham, NH 03824
Get access

Abstract

An unusual aspect of the pulsed laser deposition (PLD) process is that highly oriented (sometimes epitaxial) films of complex, multicomponent materials can often be prepared at low substrate temperatures. It is argued, using a simple model, that the arrival of even minor quantities of electronically excited species (Rydberg atoms and ions) can significantly affect the local surface temperature of the growing film. The present study experimentally confirms the existence of these energetic components in an ablation plume using a specially-modified time-of-flight quadrupole mass spectrometer. Ions as well as long-lived, excited state (Rydberg state) atoms were detected from laser ablation from a YBa2Cu307-5 (YBCO) target. Multiple peaks in the TOF profiles appear to derive from electron/ion recombination from higher charged species; the high kinetic energies observed are explainable from simple electrostatics involving localized holes trapped on the target surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Cheung, J. and Sankur, H., CRC Crit. Rev. Solid State Mater. Sei. 15, 63 (1988).Google Scholar
2 Saenger, K., Pulsed Laser Deposition. Chrisey, D. & Hubler, G., eds., Wiley, 1994.Google Scholar
3 Zheng, J.P., Ying, Q.Y., Witanachi, S., et al. , Appl. Phys. Lett. 54, 954 (1989).Google Scholar
4 Dickinson, J.T., et al. , Laser Ablation. Springer-Verlag, 389, 301 (1991).Google Scholar
5 Kools, J., Brongersma, S.H., Van de Riet, E., Dieleman, J., Appl. Phys. B, B53 125 (1991).Google Scholar
6 Wiedeman, L. Kim, H., and Helvajian, H., Appl. Phys. B, ref. 4, pp. 350–9.Google Scholar
7 Leuchtner, R.E., Horwitz, J., and Chrisey, D., Mat. Res. Soc. Symp. Proc. 285, 87 (1993).Google Scholar
8 Leuchtner, R.E., Horwitz, J., and Chrisey, D., ref. 4: a) Shea, M.J. and Compton, R.N., p. 235 and b) D. Geohegan, p. 28.Google Scholar
9 Witanachi, S., Ahmed, K., et al. , Mat. Res. Soc. Symp. Proc. 285, 51 (1993).Google Scholar
10 Dye, R.C., Brainard, R., et al. , Mat. Res. Soc. Symp. Proc. 285, 15 (1993).Google Scholar
11 Oomori, T., Ono, K., Fujita, S., and Murai, Y., Appl. Phys. Lett. 50, 71 (1987).Google Scholar
12 Gallagher, T.F., Rep. Prog. Phys. 51, 143 (1988).Google Scholar
13 Kelly, R. and Dreyfus, R.W., Nucl. Instrum. Meth. B32, 341 (1988).Google Scholar
14 Zheng, J.P., Huang, Z.Q., Shaw, D.T., and Kwok, H.S., Appl. Phys. Lett. 54, 280 (1989).Google Scholar
15 Girault, C., Damiani, D., et al. , Appl. Phys. Lett. 55, 182 (1989).Google Scholar
16 Otis, C. and Dreyfus, R.W., Phys. Rev. Lett. 67, 2102 (1991);Google Scholar
17 Otis, C.E. and Goodwin, P.M., J. Appl. Phys. 73, 1957 (1993).Google Scholar
18 Geohegan, D.B., Appl. Phys. Lett. 60, 2732 (1992).Google Scholar
19 Dyer, P.E., Greenough, R.D., Issa, A., and Key, P.H., Appl. Phys. Lett. 53, 534 (1987).Google Scholar
20 Allen, FJ., J. Appl. Phys. 43, 2175 (1972).Google Scholar
21 Ramaker, D.E., White, C.T., and Murday, J.S., Phys. Lett. 89A, 211 (1982).Google Scholar
22 Gupta, A., J. Appl. Phys. 73, 7877 (1993).Google Scholar
23 Gupta, A., Hussey, B.W., and Chern, M.Y., Physica C, 200, 263 (1992).Google Scholar