Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-24T23:16:18.447Z Has data issue: false hasContentIssue false

Materials selection for SrTiO3-based epitaxial oxide field-effect devices

Published online by Cambridge University Press:  11 February 2011

K. Shibuya
Affiliation:
Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226–8502, Japan
T. Ohnishi
Affiliation:
Institute for Solid State Physics, University of Tokyo, 5–1–5 Kashiwanoha, Kashiwa 277–8581, Japan
M. Kawasaki
Affiliation:
Institute for Materials Research, Tohoku University, 2–1–1 Katahira, Aoba-ku, Sendai 980–8577, Japan
H. Koinuma
Affiliation:
Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226–8503, Japan
M. Lippmaa
Affiliation:
Institute for Solid State Physics, University of Tokyo, 5–1–5 Kashiwanoha, Kashiwa 277–8581, Japan
Get access

Abstract

We have studied the growth of four wide gap insulator materials, CaHfO3, CaZrO3, NdGaO3, and LaGaO3 on SrTiO3. CaHfO3 was selected as the best material for forming the insulator layer of an all-oxide field-effect device because the films had the best crystallinity on SrTiO3 (100) and the highest breakdown field. (La,Sr)TiO3 was selected as a metallic oxide for fabricating the source and drain electrodes. Metallic layers were obtained by depositing ultrathin amorphous LaTiO3 films at room temperature on SrTiO3 and postannealing at high temperature to promote Sr diffusion from the substrate into the film.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sakudo, T. and Unoki, H., Phys. Rev. Lett. 26, 851 (1971).Google Scholar
2. Müller, K. A. and Burkard, H., Phys. Rev. B 19, 3593 (1979).Google Scholar
3. Pellegrino, L., Pallecchi, I., Bellingeri, E., and Siri, S. A., Appl. Phys. Lett. 81, 3849 (2002).Google Scholar
4. Pallecchi, I., Grassano, G., Marré, D., Pellegrino, L., Putti, M., and Siri, S. A., Appl. Phys. Lett. 78, 2244 (2001).Google Scholar
5. Tufte, N. O. and Chapman, W. P., Phys. Rev. 155, 796 (1967).Google Scholar
6. Schooley, J. F., Hosler, W. R., Ambler, E., Becker, J. H., Cohen, M. L., and Koonce, C. S., Phys. Rev. Lett. 14, 305 (1965).Google Scholar
7. JCPDS cards 35–790 and 36–1473.Google Scholar
8. Marti, W., Fischer, P., Altorfer, F., Scheel, J. H., and Tadin, M., J. Phys. Condens. Matter. 6, 127 (1994).Google Scholar
9. Robertson, J., J. Vac. Sci. Technol. B 18, 1785 (2000).Google Scholar
10. Hofman, W., Hoffmann, S., Waser, R., Thin Solid Films 305, 66 (1997).Google Scholar
11. Tokura, Y., Taguchi, Y., Okada, Y., Fujishima, Y., Arima, T., Kumagai, K., and Iye, Y., Phys. Rev. Lett. 70, 2126 (1993).Google Scholar
12. Okuda, T., Nakaishi, K., Miyasaka, S., and Tokura, Y., Phys. Rev. B 63, 113104–1 (2001).Google Scholar
13. Ohtomo, A., Muller, D. A., Grazul, J. L., and Hwang, H. Y., Appl. Phys. Lett. 80, 3922 (2002).Google Scholar
14. Kawasaki, M., Takahashi, K., Maeda, T., Tsuchiya, R., Shinohara, M., Ishiyama, O., Yonezawa, T., Yoshimoto, M., Koinuma, H., Science 266, 1540 (1994).Google Scholar
15. Ohashi, S., Lippmaa, M., Nakagawa, N., Nagasawa, H., Koinuma, H., Kawasaki, M., Rev. Sci. Instrum. 70, 178 (1999).Google Scholar
16. Ohnishi, T., Komiyama, D., Koida, T., Ohashi, S., Stauter, C., Koinuma, H., Ohtomo, A., Lippmaa, M., Nakagawa, N., Kawasaki, M., Kikuchi, T., and Omote, K., Appl. Phys. Lett. 79, 536 (2001).Google Scholar