Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-20T23:23:00.007Z Has data issue: false hasContentIssue false

Mathematical Modeling of the Structures and Bulk Moduli of TX2 Quartz and Cristobalite Structure-Types, T = C,Si,Ge and X = O,S

Published online by Cambridge University Press:  25 February 2011

G. V. Gibbs
Affiliation:
Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
M. B. Boisen Jr
Affiliation:
Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
R. T. Downs
Affiliation:
Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
A. C. Lasaga
Affiliation:
Yale University, New Haven, CT 06511
Get access

Abstract

Models of the oxide and sulfide structure-types of quartz and cristobalite have been made using potential energy surfaces derived from MO calculations on small molecules. The bond length and angle and the volume compressibility data calculated for quartz match those observed for pressures up to 40 kbars. An analysis of the force constants that define the potential energy surface indicates that the bulk modulus of the mineral is governed primarily by the bending force constant of the bridging angle. Similar calculations were completed for the GeO2 form of quartz, but the agreement with the observed data is somewhat poorer. A modeling of the CO2 form of quartz predicts that it would be significantly harder, more incompressible and show less expansibility than the SiO2 form.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dovesi, R., Pisani, C. and Roetti, C., J. Chem. Phys., 86, 6967 (1987).Google Scholar
2. Burnham, C. W., Reviews in mineralogy, 14, 347 (1985).Google Scholar
3. Catlow, C. R. A. and Cormack, A. N., Internat. Rev. Phys. Chem., 6, 227 (1987).Google Scholar
4. Catti, M., Phys. Chem. Miner., 7, 20 (1981).Google Scholar
5. Parker, S. C., Solid State Ionics, 8, 179 (1983).Google Scholar
6. Price, G. D. and Parker, S. C., Phys. Chem. Minerals, 10, 209 (1984).Google Scholar
7. Miyamoto, M. and Takeda, H., H. Am. Mineral., 69, 711 (1984).Google Scholar
8. Matsui, M. and Busing, W. R., Phys. Chem. Minerals., 11, 55 (1984).Google Scholar
9. Sanders, M. J., Leslie, M. and Catlow, C. R. A., J. Chem. Soc. Chem. Comm., 19, 1271 (1984).CrossRefGoogle Scholar
10. Jorgensen, J. D., J. Appl. Phys., 11, 5473 (1978).Google Scholar
11. Price, G. D., Parker, S. C. and Leslie, M., Mineral. Mag., 51, 157 (1987).CrossRefGoogle Scholar
12. Gordon, R. G. and Kim, Y. S., J. Chem. Phys., 56, 3122 (1972).Google Scholar
13. Post, J. E. and Burnham, C. W., Amer. Mineral, 71, 142 (1986).Google Scholar
14. Wolfe, G. H. and Bukowinski, M. T. S., U.S.-Japan Joint Seminar on High Pressure Research: Applications in Geophysics and Geochemistry. Edited by Manghnani, M. and Akimoto, S.. (1986).Google Scholar
15. Hemley, R. J., Jackson, M. D. and Gordon, R. G., Phys. Chem. Minerals, 14, 2 (1987).CrossRefGoogle Scholar
16. Jackson, M. D., Theoretical Investigations of Chemical Bonding in Minerals, Ph.D. Thesis, Harvard University (1986).Google Scholar
17. Jackson, M. D. and Gibbs, G. V., J. Phys. Chem. 92, 540 (1988).Google Scholar
18. Lasaga, A. C. and Gibbs, G. V. Phys. Chem. Minerals., 14, 107 (1987).Google Scholar
19. Gibbs, G. V. and Boisen, M. B. Jr, Better Ceramics Through Chemistry II, Mat. Res. Soc. Symp. Proc, 73, 515 (1986).Google Scholar
20. Gibbs, G. V., Amer. Mineral., 67, 421 (1982).Google Scholar
21. O'Keeffe, M., Domenges, B. and Gibbs, G. V., J. Phys. Chem., 89, 2304 (1985).Google Scholar
22. O'Keeffe, M. and McMillan, P. F., J. Phys. Chem., 90, 541 (1986).Google Scholar
23. Hess, A. C., McMillan, P. F. and O'Keeffe, M., J. Phys. Chem., 90, 5661 (1986).Google Scholar
24. Geisinger, K. L., Spackman, M. A. and Gibbs, G. V., J. Phys. Chem., 91, 3237 (1987).Google Scholar
25. Gibbs, G. V., D'Arco, P. and Boisen, M. B. Jr, J. Phys. Chem., 91, 5347 (1987).Google Scholar
26. Busing, W. R., WMIN, a computer program to model molecules and crystals in terms of potential energy functions. ORNL-5747, Oak Ridge National Laboratory, Oak Ridge, TN (1972).Google Scholar
27. Lasaga, A. C. and Gibbs, G.V., Phys. Chem. Mineral., 15, (1988).Google Scholar
28. Lager, G. A., Jorgensen, J. D. and Rotella, F. J., J. Appl. Phys., 53, 6751 (1982).Google Scholar
29. Burkert, U. and Allinger, N. L. Molecular Mechanics, Amer. Chem. Soc. Monograph 177, Washington D.C., 339pp (1982).Google Scholar
30. Levien, L., Prewitt, C. T. and Weidner, D. J., Amer. Mineral., 65, 920 (1980).Google Scholar
31. Gibbs, G. V., Boisen, M. B. Jr and D'Arco, P., Abstract V. M. Goldschmidt Conference, p. 44 (1988).Google Scholar
32. Weidner, and Simmons, , J. Geophys. Res. 77, 826 (1972).Google Scholar
33. Pluth, J. J., Smith, J. V. and Faber, J. Jr, J. Appl. Phys., 57, 1045 (1985).Google Scholar
34. O'Keeffe, M., Newton, M. D. and Gibbs, G. V., Phys. Chem. Minerals., 6, 305 (1980).Google Scholar
35. Anderson, O. and Nafe, J. E., J. Geophys. Res. 70, 3951 (1965).Google Scholar
36. Newnham, R. E., Structural-Property Relations, Springer-Verlag, New York (1975).Google Scholar
37. Mijlhoff, F. C., Geise, H. J. and Van Schaick, E. J. M., J. Mol. Struct. 20, 393 (1973).Google Scholar
38. Meier, W. H., Zeolite Structures, Proc. Conf. Molecular Sieves, Soc. Chem. Industry. 10 (1968).Google Scholar
39. Mortier, W. J. and Schoonheydt, R. A., Prog. Solid State Chem., 16, 1 (1985).Google Scholar