Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-10-04T20:20:59.709Z Has data issue: false hasContentIssue false

Measurements of Elastic Modulus Using Laser-Induced Surface Waves

Published online by Cambridge University Press:  21 February 2011

D. J. Chang
Affiliation:
The Aerospace Corporation, M5-753, Mechanics and Propulsion Department, P. O. Box 92957, Los Angeles, CA 90009
S. T. Amimoto
Affiliation:
The Aerospace Corporation, M5-753, Mechanics and Propulsion Department, P. O. Box 92957, Los Angeles, CA 90009
R. W. Gross
Affiliation:
The Aerospace Corporation, M5-753, Mechanics and Propulsion Department, P. O. Box 92957, Los Angeles, CA 90009
T. S. Glenn
Affiliation:
The Aerospace Corporation, M5-753, Mechanics and Propulsion Department, P. O. Box 92957, Los Angeles, CA 90009
Get access

Abstract

Measurements of the elastic modulus of fused silica, 6061-T6 and 7075-T651 aluminum alloys, GaAs, Ge, and Si samples are reported. A pulsed laser is used to generate surface acoustic waves in a sample and the wave velocity is measured using a knife-edge detection method. From the velocity of the surface waves the elastic modulus can be calculated.[1] Extension of this work to thin films is discusssed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Farnell, G. W. in Physics Acoustics. Principles and Methods, vol. 6, ed. by Warren Mason, P. and Thurston, R. N., Academic Press, 1970.Google Scholar
2. Microwave Acoustic Handbook. Volume 1. Surface Wave Velocities, ed. by Slobodnik, A. J. Jr., Conway, E. D., AFCRL -70-0164, Air Force Cambridge Research Laboratories, L. G. Hanscom Field, Bedford, Massachusetts, pp. 123143 (1970).Google Scholar
3. Blakemore, J. S., J. Appl. Phys. 53, R123R181 (1982).Google Scholar
4. Wortman, J. J. and Evans, R. A., J. Appl. Phys 36, 153 (1965).Google Scholar
5. McSkimin, H. J. and Andreatch, P. Jr., J. Appl. Phys. 35, 2161 (1964).Google Scholar
6. Nielsen, O. H., (Proceedings of the 17th International Conference on the Physics of Semiconductors, San Francisco, CA, 6-10 August, 1984) pp. 11611164.Google Scholar
7. Mckie, A. D. W., Wagner, J. W., Spicer, J. B., and Deaton, J. B. Jr., Appl. Optics 30, 4034 (1991).Google Scholar
8. Arzt, R. M. and Dransfelt, K., Appl. Phys. Letts. 7, 156 (1965).Google Scholar
9. Coufal, H., Grygier, R., Hess, P., and Neubrand, A., J. Acoust. Soc. Am. 92, 2980 (1992).Google Scholar
10. Coufal, H., Meyer, K., Grygier, R., Hess, P., and Neubrand, A., J. Acoust. Soc. Am. 95, 1158 (1994).Google Scholar
11. Meth, J. S., Marshall, C. D., and Fayer, M. D., J. Appl. Phys. 67, 3362 (1990).Google Scholar