Hostname: page-component-5c6d5d7d68-pkt8n Total loading time: 0 Render date: 2024-08-15T15:50:18.212Z Has data issue: false hasContentIssue false

Mechanical, Adhesive and Thermodynamic Properties of Hollow Nanoparticles

Published online by Cambridge University Press:  21 March 2011

U. S. Sch warz
Affiliation:
Max-Planck-Institute of Colloids and Interfaces, 14424 Potsdam, Germany
S. A. Safran
Affiliation:
Department of Materials and In terfaces, Weizmann Institute, Rehovot76100, Israel
S. Komura
Affiliation:
Department of Chemistry, Tokyo Metropolitan University, Tokyo 192-0397, Japan
Get access

Abstract

When sheets of layeredmaterial like C., WS2 or BN are restricted to [ ]nite sizes, they generally form single- and multi-walled hollow nanoparticles in order to avoiddangling bonds. Using contin uum approaches to model elastic deformation and van der Waals in teractions of spherical nanoparticles, we predict the variation of mechanical stability, adhesive properties and phase behavior with radius R and thickness h. We find that mechanical stability is limited by forces in the nN range and pressures in the GPa range. Adhesion energies scale linearly with R, but depend only weakly on h. Deformation due to van der Waals adhesion occurs for single-walled particles for radii of few nm, but is quickly suppressed for increasing thickness. As R is increased, the gas-liquid coexistence disappears from the phase diagram for particle radii in the range of 1-3 nm (depending on wall thickness) since the in teraction rangedecreases like 1/R.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Tenne, R., Adv. Mater., 7, 965 (1995) and to appear in Progress in Inorg. Chem.Google Scholar
[2] Girifalco, L. A., J. Phys. Chem., 96, 858 (1992).Google Scholar
[3] Caccamo, C., Costa, D., and Fucile, A., J. Chem. Phys., 106, 255 (1997). M. Hasegawa and K. Ohno, J. Chem. Phys., 111, 5955 (1999).Google Scholar
[4] Ruoff, R. S., Tersoff, J., Lorents, D. C., Subramoney, S., and Chan, B., Nature, 364, 514 (1993). T. Hertel, R. E. Walkup, and P. Avouris, Phys. Rev. B, 58, 13870 (1998).Google Scholar
[5] Rapoport, L., Bilik, Y., Feldman, Y., Homyonfer, M., Cohen, S. R., and Tenne, R., Nature, 387, 791 (1997). M.Chhowalla and G. A. J.Amaratunga, Nature, 407, 164 (2000).Google Scholar
[6] Golan, Y., Drummond, C., Homyonfer, M., Feldman, Y., Tenne, R., and Israelachvili, J., Adv. Mat., 11, 934 (1999). Y. Golan, C. Drummond, J. Israelachvili, and R. Tenne, Wear, 245, 190 (2000).Google Scholar
[7] Schwarz, U. S., Komura, S., and Safran, S. A., Europhys. Lett., 50, 762 (2000).Google Scholar
[8] Schwarz, U. S. and Safran, S. A., Phys. Rev. E, 62, 6957 (2000).Google Scholar
[9] Robertson, D. H., Brenner, D. W., and Mintmire, J. W., Phys. Rev. B, 45, 12592 (1992). J. P. Lu, Phys. Rev. Lett., 79, 1297 (1997).Google Scholar
[10] Hernandez, E., Goze, C., Bernier, P., and Rubio, A., Phys. Rev. Lett., 80, 4502 (1998). G. Seifert, H. Terrones, M. Terrones, G. Jungnickel, and T. Frauenheim, Phys. Rev. Lett., 85, 146 (2000).Google Scholar
[11] Landau, L. D. and Lifshitz, E. M., Theory of elasticity (Pergamon Press, 1970).Google Scholar
[12] Srolovitz, D. J., Safran, S. A., and Tenne, R., Phys. Rev. E, 49, 5260 (1994).Google Scholar
[13] Tersoff, J., Phys. Rev. B, 46, 15546 (1992). T. A. Witten and H. Li, Europhys. Lett., 23, 51 (1993).Google Scholar
[14] Gast, A. P., Hall, C. K., and Russel, W. B., J. Coll. Inter. Sci., 96, 251 (1983).Google Scholar
[15] Tejero, C. F., Daanoun, A., Lekkerkerker, H. N. W., and Baus, M., Phys. Rev. Lett., 73, 752 (1994) and Phys. Rev. E, 51, 558 (1995).Google Scholar
[16] In [7], we incorrectly took this energy to be E vdW ∼ (A/D 2)RH. This overestimates the deformation by adhesion by a factor of R/D, but does not change our general conclusions.Google Scholar