Hostname: page-component-5c6d5d7d68-pkt8n Total loading time: 0 Render date: 2024-08-23T06:19:32.316Z Has data issue: false hasContentIssue false

Mechanical Properties of Biological Nanocomposite Nacre: Multiscale Modeling and Experiments on Nacre from Red Abalone

Published online by Cambridge University Press:  26 February 2011

Pijush Ghosh
Affiliation:
pijush.ghosh@ndsu.edu, North Dakota State University, Civil Engineering, United States
Devendra Verma
Affiliation:
devendra.verma@ndsu.edu, North Dakota State University, Civil Engineering, United States
Bedabibhas Mohanty
Affiliation:
bedabibhas.mohanty@ndsu.edu, North Dakota State University, Civil Engineering, United States
Kalpana S Katti
Affiliation:
kalpana.katti@ndsu.edu, North Dakota State University, Civil Engineering, United States
Dinesh R Katti
Affiliation:
dinesh.katti@ndsu.edu, North Dakota State University, Civil Engineering, United States
Get access

Abstract

Nacre, the inner iridescent layer of mollusks shell is a bio-nanocomposite with the mineral aragonite as a major constituent and 2-5% of organics mainly in the form of proteins. Our multiscale modeling and experimental studies reveal that the microstructure and the small weight percent of organics are the key parameters attributed to the extreme toughness of nacre. We report that the presence of platelet interlocks nacre have a significant role in the enhancement of mechanical properties. Molecular simulation study is conducted to understand the behavior of aragonite-organic interface. The mechanical behavior of organics and inorganics in presence of each other is described using steered molecular dynamics simulations. This provides some understanding on the deformation mechanisms of the protein present between the aragonite layers. Our nanoindentation results indicate that the elastic modulus and hardness of nacre decreases as it is exposed to a denaturing temperature for proteins. The changes in the organic inorganic interaction have been experimentally described using Fourier Transform Infrared Spectroscopy. This work gives insight into the contribution of the various factors existing at different length scales on the overall mechanical behavior of nacre.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Taylor, J. D., Kennedy, W. J., and Hall, A., Bulletin of the British Museum (Natural History), Zoology Supplement 3, 125 (1969).Google Scholar
2. Erben, H.K., Biomineralization, Forschungsberichte 4, 15, (1972).Google Scholar
3. Currey, J.D., Proceeedins of the Royal Society of London, Series B. 196, 443 (1977).Google Scholar
4. Currey, J. D., in The Mechanical Properties of Biological Materials, edited by Vincent, J. F. V. and Currey, J. D. (Cambridge University Press, London, 1980) p. 75.Google Scholar
5. Yasrebi, M., Kim, G. H., Gunnison, K. E., Milius, D. L., Sarikaya, M. and Aksay, I. A., Mat. Res. Soc. Proc. 180, 625, (1990).Google Scholar
6. Sarikaya, M., Gunnison, K. E., Yasrebi, M., Milius, D. L and Aksay, I. A., Mat. Res. Soc. Proc. 174, 109 (1990).Google Scholar
7. Jackson, A. P., Vincent, J. F.V., and Yurner, R. M., Proc. R. Soc. London, Ser. B 234, 415 (1988).Google Scholar
8. Katti, D. R. and Katti, K. S., Journal of Materials Science, 36, 14111471 (2001)Google Scholar
9. Katti, K.S. and Katti, D.R., Computer Methods and Advances in Geomechanics, Desai et al. Balkema, Rotterdam (2001).Google Scholar
10. Katti, D. R., Pradhan, S. M. and Katti, K. S., Rev. Adv. Mater. Sci., 6, 162168, (2004).Google Scholar
11. Katti, K. S., Katti, D. R., Pradhan, S. M. and Bhosle, A., J. Mater. Res., 20(5), 1097 (2005).Google Scholar
12. Kim, W., Dimasi, E. and Evans, J. S., Crystal Growth and Design, 16, (2004).Google Scholar
13. Blank, S., Arnoldi, M., Khoshnavaz, S., Treccani, L., Kuntz, M., Mann, K., Grathwohl, G. and Frtiz, M., Journal of Microscopy, 212, 280291 (2003).Google Scholar
14. Weiss, I. M., Kaufmann, S., Mann, K. and Fritz, M, Biochemical and Biophysical Research Communications, 267, 1721, (2000).Google Scholar
15. Shen, X., Belcher, A., Hansma, P. K., Stucky, G. D. and Morse., D. E., The Journal of Biological Chemistry, 272(51), 3247232481 (1997).Google Scholar
16. Zhang, B., Wustman, B. A., Morse, D. and Evans, J. S., Biopolymers, 63, 358369, (2002).Google Scholar
17. Lu, H., Isralewitz, B., Krammer, A., Vogel, V. and Schulten, K., Biophysical Journal, 75, 662671, (1998).Google Scholar
18. Kosztin, I., Bruinsma, R., O'lague, P. and Schulten, K., Biophysics, 99, 3575 (2002).Google Scholar
19. de Villers, J. P. R., American Mineralogist 5, 758767 (1971)Google Scholar
20. Insight II; Accelrys Inc., 2000.Google Scholar
21. Brooks, B. R, Bruccoleri, R. E., Olafson, B. D., States, Swaminathan, D. S., Karplus, M., J. Comput. Chem., 4, 187217 (1983).Google Scholar
22. Jackson, R.A., CPS:phychem/0107001.Google Scholar