Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-19T05:58:58.654Z Has data issue: false hasContentIssue false

Mechanical Properties of CVD Tungsten Fibers

Published online by Cambridge University Press:  25 February 2011

David Lilienfeld
Affiliation:
National Nanofabrication Facility
James Steinwall
Affiliation:
Department of Materials Science and EngineeringCornell University
Peter Borgesen
Affiliation:
Department of Materials Science and EngineeringCornell University
Get access

Abstract

Tungsten fibers were fabricated with dimensions relevant to microelectronics and microfabrication. The strength and modulus were 1.57±0.7GPa and 276±lO%GPa, respectively. The failure mode was most consistent with intergranular fracture.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Huegel, F. A. and Holman, W. R. in Chemical Vapor Deposition ed. Blocher, J. M. Jr., and Withers, J. C (The Electrochemical Society, New York, 1970) p. 171 Google Scholar
2. Cuomo, J. J. in The Third International Conference on Chemical Vapor Deposition ed. Glaski, F. A. (American Nuclear Society, Hinsdale, 1972) p. 270 Google Scholar
3. Tungsten and Other Refractory Metals for VLSI Application IV ed. Blewer, R. S. and McConica, C. M. (Materials Research Society, Pittsburg, 1989)Google Scholar
4. Tungsten and Other Refractory Metals for VLSI Application III ed. Wells, V. A. (Materials Research Society, Pittsburg, 1988)Google Scholar
5. Tungsten and Other Refractory Metals for VLSI Application II ed. Broadbent, E. K. (Materials Research Society, Pittsburg, 1987)Google Scholar
6. Tungsten and Other Refractory Metals for VLSI Application ed. Blewer, R. S. (Materials Research Society, Pittsburg, 1986)Google Scholar
7. Thomas, D. C. and Wong, S. S. in IEDM Tech. Dig., 811 (1986)Google Scholar
8. Thomas, D. and Wong, S. U. S. Patent # 4,746,621 and # 4,907,066Google Scholar
9. MacDonald, N. C., Chen, L. Y., Yao, J. J., Zhang, L. Z., McMillen, J. A., and Thomas, D. C., Sensors and Actuators 20 123 (1989)Google Scholar
10. Chen, L. Y., Zhang, L. Z., Yao, J. J., Thomas, D. C. and MacDonald, N. C., Proc. IEEE Microelectromechanical Systems Workshop, p. 82, 1989, IEEE catalogue number 89TH0249-3Google Scholar
11. Koskinen, J. and Johnson, H. H., Mat. Res. Soc. Symp. Proc. 130 63 (1989)Google Scholar
12. Mikhailovskii, I. M., Poltinin, P. Ya. and Fedorova, L. I., Sov. Phys. Solid State 23 757 (1981)Google Scholar
13. Fridman, V. Ya., Sov. Phys. Solid State 12 2461 (1971)Google Scholar
14. Koskinen, J., Soave, R., Steinwall, J. E. and Johnson, H. H., to be publishedGoogle Scholar
15. Strong Solids 3rd edition Kelly, A. and McMillan, N. H. (Oxford Science Publications, Clarendon Press, Oxford, 1986)Google Scholar