Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-13T19:05:26.907Z Has data issue: false hasContentIssue false

Mechanical Properties of SiO2 vs. SiO2-TiO2 Bulk Glasses and Fibers

Published online by Cambridge University Press:  15 February 2011

Suresh T. Gulati*
Affiliation:
Coming Incorporated, RD&E, Coming, NY 14831
Get access

Abstract

The mechanical properties of silica and titania-doped silica glasses, in bulk and fiber forms, are presented. These include the elastic properties (E and ν), strength distribution (in tension and bending), fatigue behavior (dynamic and static loading) and fracture toughness. Following a brief review of above properties for fused silica and ULE™ glasses (Coming Codes 7940 and 7971), used primarily for space applications, the mechanical properties data for silica and titania-doped silica-clad optical fibers are presented. The enhancement of mechanical performance of titania-doped silica clad fiber is also discussed.

The effect of titania doping on fundamental properties like stress-free activation energy, crack tip pH, and deformation mode of Si-O-Si bond is discussed. In addition, the crack velocity data obtained from DCDC specimens of homogeneous silica and titania-doped silica glasses are compared in an attempt to understand the role titania plays in improving the fatigue resistance of optical fibers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nordberg, M.E.; U.S. Pat. 2,326,059; July 3, 1943.Google Scholar
2. Plummer, W.A. et al.; Applied Optics, 7 (5),1968.10.1364/AO.7.000825Google Scholar
3. Wiederhorn, S.M. et al.; Fracture Mech. of Ceramics 2, Ed. R.C. Bradt et al., Plenum Pub. Press, New York.Google Scholar
4. Gulati, S.T. et al.; IASS World Cong. on Space Enclosures; Concordia Univ., Montreal, 1976.Google Scholar
5. Dote, H. et al.; J. Spacecraft, 18 (3) 1981.10.2514/3.57839CrossRefGoogle Scholar
6. Wiederhorn, S.M. et al; J. Am. Ceram. Soc., 57 (7) 1974.CrossRefGoogle Scholar
7. Brookhaven National Lab, Private Communication.Google Scholar
8. Williams, S.; “Cerenkov Ring Imaging Detector Development at SLAC,” SLACPUB-3360, 1984.Google Scholar
9. Maurer, R.D. and Schultz, P.C.; U.S. Pat. 3,659,915; May, 1972.Google Scholar
10. Keck, D.B. et al.; J. Lightwave Tech., Vol.7, No. 11, 1989.10.1109/50.45881Google Scholar
11. Kao, C. and Mokhtar, S.M.; U.S. Pat. 4,243,298; 1981.Google Scholar
12. Evans, D.L.; J. Non-Cryst. Solids, 52, 1982; pp. 115128.10.1016/0022-3093(82)90285-XGoogle Scholar
13. Schultz, P.C.; J. Am. Ceram. Soc., 59 (5–6), 1976.Google Scholar
14. DeVries, R.C. et al.; Trans. Brit. Cer. Soc., 93, 1954; pp. 525540.Google Scholar
15. Evans, D.L. and Teter, M.P..; The Structure of Non-Crystalline Materials, ed. P.H., Gaskel, Taylor & Francis, London, 1974.Google Scholar
16. Allan, D.C. and Teter, M.P.; J. Am. Ceram. Soc., 73(11), 1990.10.1111/j.1151-2916.1990.tb06445.xGoogle Scholar
17. Dove, M.T.; Trans. Am. Cryst. Assoc., 27, 1991.Google Scholar
18. Spangenberg-Jolley, J.; Ceram. Bull., 69 (12) 1990.Google Scholar
19. Gulati, S.T. and Helfinstine, J.D.l. Annual Mtg. Am. Ceram. Soc., Dallas, April 1989.Google Scholar
20. Hagy, H.E.; App. Optics, 12 (7), 1973.10.1364/AO.12.001440Google Scholar
21. Glaesemann, G.S. et al., Tech. Digest, 11th Optical Fiber Conference, 1988.Google Scholar
22. Griffioen, W.; J. Am. Ceram. Soc. (to appear).Google Scholar
23. NASA Tech. Briefs MFS-27206, Marshall Space Flight Center, AL; 1985.Google Scholar
24. Stoll, R. et al.; Union Scientifique Continentale du Verre, Symp. on Strength of Glass and Ways to Improve If, Florence, Italy, Sept. 1961.Google Scholar
25. Kerper, M.J. et al., Ceram. Bull., 43 (9), 1964.Google Scholar
26. Evans, A.G. et al.; Int. J. Frac., 10, 1974.CrossRefGoogle Scholar
27. Gulati, S.T. and Hagy, H.E.; I.Am. Ceram. Soc., 61 (5–6), 1978.10.1111/j.1151-2916.1978.tb09295.xGoogle Scholar
28. Glaesemann, G.S. and Gulati, S.T.; Opt. Eng., 30 (6), 1991.10.1117/12.55870Google Scholar
29. Gulati, S.T. et al.; Proc. SPIE, 842, Bellingham, WA, 1988.Google Scholar
30. Matthewson, M.J. et al.; J. Am. Ceram. Soc., 60 (11), 1986.Google Scholar
31. Kalish, D. et al.; J. Am. Ceram. Soc., 61,1978.Google Scholar
32. Mitsunaga, Y. et al.; Electr. Lett., 17, 1981.10.1049/el:19810398Google Scholar
33. Glaesemann, G.S. and Walter, D.J.., Opt. Eng., 30 (6), 1991.10.1117/12.55870Google Scholar
34. Roberts, D.R. et al., Opt. Eng., 30 (6), 1991.10.1117/12.55871Google Scholar
35. Abé, K. et al., Opt. Eng., 30 (6), 1991.10.1117/12.55872Google Scholar
36. Kennedy, M.T. et al., SPIE '91 Conf., Boston; Sept. 1991.Google Scholar
37. Krause, J.T., J. Non-Cryst. Solids, 38,39, 1980.Google Scholar
38. France, P.W. et al., J. Mat. Sci., 18, 1983.Google Scholar
39. Roberts, D.R. et al., SPIE Proc., 842, 1987.Google Scholar
40. Ritter, J.E. et al., J. Am. Ceram. Soc., 71 (1), 1988.Google Scholar
41. Kurkjian, C.R. et al., J. De Physique, 43 (12), 1982.10.1051/jphyscol:19829115CrossRefGoogle Scholar
42. Robinson, R.S. et al., J. Am. Ceram. Soc., 74 (4), 1991.Google Scholar
43. Chandan, H. et. al., J. Am. Ceram. Soc., 65, 1982.Google Scholar
44. Helfinstine, J.D. et al., Optics & Laser Tech., June 1982.Google Scholar
45. Kurkjian, C.R. et al., App. Phys. Lett., 28 (10), 1976.10.1063/1.88601Google Scholar
46. Wang, T.T. et al., J. Mat. Sci., 13, 1978.Google Scholar
47. Matthewson, M.J. et al., J. Am. Ceram. Soc., 71 (3), 1988.Google Scholar
48. Matthewson, M.J. et al., J. Am. Ceram. Soc., 70 (9), 1987.Google Scholar
49. Roberts, D.R. et al., SPIE Proc., 721, 1987.10.1016/0002-9149(87)91207-0Google Scholar
50. Kurkjian, C.R. et al., App. Phys. Lett., 42 (3), 1983.10.1063/1.93905Google Scholar
51. Mallinder, F.P. et al., Phys. Chem. Glasses, 5 (4), 1964.Google Scholar
52. France, P.W. et al., J. Mat. Sc., 15, 1980.Google Scholar
53. Krause, J.T. et al., Phys. Chem. Glasses, 20 (6), 1979.Google Scholar
54. Glaesemann, G.S. and Gulati, S.T., Tech. Digest 12th OFC, WA3, 48, 1989.Google Scholar
55. Gulati, S.T., Fall Mtg. Glass Div. Am. Ceram Soc., Bedford Springs, PA, Oct. 1981.Google Scholar
56. Morse, L.R. and Wait, C.S., Corning Incorporated, Unpublished Data.Google Scholar
57. Fox, P.G., Phys. Chem. Glasses, 21 5, Oct. 1980.Google Scholar
58. Michalske, T.A. et al., Nature, 295 (2), 1982.10.1038/295511a0Google Scholar
59. Pukh, V.P., XV Int'l Cong. Glass, Leningrad, 1989.Google Scholar
60. Glaesemann, G.S. et al., 1990 OFC Conf., San Francisco; Feb. 1990.Google Scholar
61. Michalske, T.A. and Hellmann, J.R.., J. Am. Ceram. Soc., 71 (9), 1988.10.1111/j.1151-2916.1988.tb06405.xGoogle Scholar
62. Glaesemann, G.S., 1991 SPIE Conference, Boston, MA, Sept. 1991.Google Scholar
63. Helfinstine, J.D. and Quan, F., Opt. Laser Technol., 14 (3), 1982.10.1016/0030-3992(82)90108-6CrossRefGoogle Scholar
64. Krohn, D.A. et al., J. Am. Ceram. Soc., 52 (12), 1969.10.1111/j.1151-2916.1969.tb16072.xGoogle Scholar
65. Gulati, S.T. et al., Proc. 6th Int'l Symp. Thermal Expansion, 1977.Google Scholar
66. Oh, S.M. et al. Optics Lett., 7 (5), 1982.10.1364/OL.7.000241Google Scholar
67. Ritter, J.E. et al., Glass and Optical Mat'ls Mtg. of Am. Ceram. Soc.; Arlington, VA; October 20–23, 1991.Google Scholar
68. Janssen, C., Proc. 10th Int'l Congress on Glass, Tokyo, 1984.Google Scholar
69. Smith, W.L., MTS Bull., Minneapolis, MN; 1989.Google Scholar
70. Helfinstine, J.D. et. al., Phys. Non-Cryst. Solids, Cambridge, England, Aug. 1991.Google Scholar