Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-19T06:13:25.009Z Has data issue: false hasContentIssue false

Mechanical Properties of Zr-Al-Cu-Ni Alloy Glass at Different Quenching Condition

Published online by Cambridge University Press:  10 February 2011

H. Yabe
Affiliation:
Department of Materials Science, Tokai University, 1117 Kita-kaname, Hiratsuka, Kanagawa, 259–1292 JAPAN, am026429@keyaki.cc.u-tokai.ac.jp
R. Toyoshima
Affiliation:
Department of Materials Science, Tokai University, 1117 Kita-kaname, Hiratsuka, Kanagawa, 259–1292 JAPAN, am026429@keyaki.cc.u-tokai.ac.jp
Y. Hiraiwa
Affiliation:
Department of Materials Science, Tokai University, 1117 Kita-kaname, Hiratsuka, Kanagawa, 259–1292 JAPAN, am026429@keyaki.cc.u-tokai.ac.jp
K. Oguri
Affiliation:
Department of Materials Science, Tokai University, 1117 Kita-kaname, Hiratsuka, Kanagawa, 259–1292 JAPAN, am026429@keyaki.cc.u-tokai.ac.jp
Y. Miyazawa
Affiliation:
Department of Materials Science, Tokai University, 1117 Kita-kaname, Hiratsuka, Kanagawa, 259–1292 JAPAN, am026429@keyaki.cc.u-tokai.ac.jp
Y. Nishi
Affiliation:
Department of Materials Science, Tokai University, 1117 Kita-kaname, Hiratsuka, Kanagawa, 259–1292 JAPAN, am026429@keyaki.cc.u-tokai.ac.jp
Get access

Abstract

The samples of Zr56Al9Cu5Ni30 alloy were prepared by liquid-quenching. The mechanical properties depend on the cooling condition. The Hv value (25g load) is 580 for slow cooled rate sample, whereas the Hv value is over 800 for fast cooled sample. Since the fast cooling enhances the sample hardness, these samples become brittle. The brittleness is evaluated by the critical deformation energy (Ec) of collapse.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Inoue, I. A., Zhang, T. and Masumoto, T.. J. Non-Cryst. Sol. 156–158 (1993) 473480.Google Scholar
2. Inoue, A., Zhang, T. and Masumoto, T.. Mater. Trans., JIM 31 (1990) 929.Google Scholar
3. Brenner, A., Couch, D. E. and Willoams, E. K.. J. Res. Nat. Bur. Stand. 44 (1950) 109.Google Scholar
4. Buckel, W. and Hisch, R.. Z. Phys. 132 (1952) 420.Google Scholar
5. Evans, A. G. and Charls, E. A.. J. Am. Ceram. Soc. 59 (1976) 371.Google Scholar
6. Nishi, Y., Ninomiya, N., Kanai, F., Uchida, S. and Moriya, S.. J. Appl. Phys. 66 (1989) 2069.Google Scholar
7. Nishi, Y., Ninomiya, N., Katagiri, T. and Harano, H.. J. Mater. Sci. Lett. 7 (1988) 1126.Google Scholar
8. Nishi, Y., Katagiri, T., Yamano, T., Kanai, F., Ninomiya, N., Uchida, S., Oguri, K., Morishita, T., Endo, T. and Kawakami, M.. Appl. Phys. Lett. 58 (1991) 2084.Google Scholar
9. Nishi, Y., Suzuki, K. and Masumoto, T., edited by T. Masumoto and K. Suzuki ( Fourth International Conference on Rapidly Quenched Metals Proc. Sendai, 1981 ) pp. 217220.Google Scholar
10. Nishi, Y., Harano, H., Uchida, S., K. Oguri. J. Materials Science 25 (1990) 44774482.Google Scholar
11. Nishi, Y., Suzuki, K. and Masumoto, T., J. Jpn Inst. Met. 45 13001305 (1981).Google Scholar
12. Uchida, S., Shibata, O., Oguri, K. & Nishi, Y.. J. Mater. Sci. 29 (1994) 55895592.Google Scholar
13. Nishi, Y. and Harano, H.. J. Appl. Phys. 63 (1988) 1141.Google Scholar
14. Nishi, Y., Harano, H., Fukunaga, T. and Suzuki, K.. Phys. Rev. B 37 (1988) 2855.Google Scholar
15. Nishi, Y., Harano, H., Ishizuki, H., Kawakami, M. & Yajima, E.. Mater.Sci.Eng. 98 (1988) 505.Google Scholar
16. Kendall, M. and Stuart, A., “The Advanced Theory of Statistics”, Vol. 1, (Charles Griffin, London, 1969) pp. 383–5.Google Scholar