Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-20T07:23:03.291Z Has data issue: false hasContentIssue false

The Mechanism of Chitosan Enhanced Lung Surfactant Adsorption at the Air-Liquid Interface in the Presence of Serum Proteins

Published online by Cambridge University Press:  01 February 2011

Patrick C Stenger
Affiliation:
psteng@engineering.ucsb.edu, University of California, Santa Barbara, Department of Chemical Engineering, Engineering 2, Room 3357, Santa Barbara, CA, 93106-5080, United States
Omer M Palazoglu
Affiliation:
omerp@umail.ucsb.edu, University of California, Department of Chemical Engineering, Santa Barbara, CA, 93106-5080, United States
Joseph A Zasadzinski
Affiliation:
gorilla@engineering.ucsb.edu, University of California, Department of Chemical Engineering, Santa Barbara, CA, 93106-5080, United States
Get access

Abstract

Pressure-area isotherms and fluorescence microscopy were used to investigate the impact of chitosan on the competitive adsorption between lung surfactant (LS) and serum proteins at the air-liquid interface. Isotherms demonstrate an optimum chitosan concentration to mediate LS adsorption; higher concentrations actually reduce the amount of LS which can adsorb. Fluorescence microscopy images show the transition from a serum protein to LS-covered interface for the optimum chitosan concentration; this transition goes through a sharply phase separated coexistence region. The results suggest that the cationic chitosan molecules mediate adsorption of the negatively charged LS aggregates by reducing the electrostatic barrier imposed by negatively charged interfacial serum proteins.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Notter, R., Lung surfactant: basic science and clinical applications vol. 149. New York: Marcel Dekker, 2000.Google Scholar
2. Suresh, G. K. and Soll, R. F., J Perinatol, 25, S40–S44, (2005).Google Scholar
3. Rubenfeld, G. D., Caldwell, E., Peabody, E., Weaver, J., Martin, D. P., Neff, M., Stern, E. J., and Hudson, L. D., New Engl J Med, 353, 16851693, (2005).Google Scholar
4. Ware, L. B. and Matthay, M. A., New Engl J Med, 342, 13341349, (2000).Google Scholar
5. Lu, K. W., Taeusch, H. W., Robertson, B., Goerke, J., and Clements, J. A., Am J Resp Crit Care, 162, 623628, (2000).Google Scholar
6. Warriner, H. E., Ding, J., Waring, A. J., and Zasadzinski, J. A., Biophys. J., 82, 835842, (2002).Google Scholar
7. Zasadzinski, J. A., Alig, T. F., Alonso, C., Serna, J. B. de la, Perez-Gil, J., and Taeusch, H. W., Biophys. J., 89, 16211629, (2005).Google Scholar
8. Lu, K. W., Goerke, J., Clements, J. A., and Taeusch, H. W., Pediatr Res, 58, 206210, (2005).Google Scholar
9. Zuo, Y. Y., Alolabi, H., Shafiei, A., Kang, N. X., Policova, Z., Cox, P. N., Acosta, E., Hair, M. L., and Neumann, A. W., Pediatr Res, 60, 125130, (2006).Google Scholar
10. Stenger, P. C. and Zasadzinski, J. A., Biophys. J., 92, 39, (2007).Google Scholar
11. Kumar, M., Muzzarelli, R. A. A., Muzzarelli, C., Sashiwa, H., and Domb, A. J., Chem Rev, 104, 60176084, (2004).Google Scholar
12. Braun, A., Stenger, P. C., Warriner, H. E., Zasadzinski, J. A., Lu, K. W., and Taeusch, H. W., Biophys. J., 93, 123139, (2007).Google Scholar
13. Alonso, C., Alig, T., Yoon, J., Bringezu, F., Warriner, H., and Zasadzinski, J. A., Biophys. J., 87, 41884202, (2004).Google Scholar
14. Lipp, M. M., Lee, K. Y. C., Zasadzinski, J. A., and Waring, A. J., Science, 273, 11961199, (1996).Google Scholar
15. Claesson, P. M., Poptoshev, E., Blomberg, E., and Dedinaite, A., Adv Colloid Interfac, 114, 173187, (2005).Google Scholar