Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-18T23:25:02.808Z Has data issue: false hasContentIssue false

Mechanism of Laser-Assisted Evaporation of II-VI Semiconductors

Published online by Cambridge University Press:  21 February 2011

J. T. Cheung*
Affiliation:
Rockwell International Science Center1049 Camino Dos RiosThousand Oaks, CA 91360
Get access

Abstract

The evaporation mechanism of CdTe, HgTe and HgO.7CdO.3Te under high power laser irradiation was investigated using mass spectroscopy. Results were compared to thermal evaporation. Thermal evaporation yields Te molecules and Cd(Hg) atoms. In the case of HgTe and Hgo.7Cdo.3Te, the evaporation is noncongruent. Evaporation induced by the irradiation of 1.06 μm Nd:YAG laser pulses evolves atomic Hg, Cd and Te congruently. The dissociative and congruent nature of this process makes it a very attractive technique for depositing thin films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schwartz, H. and Tourbellot, H. A., J. Vac. Sci. Tech. 6, 373 (1969).Google Scholar
2. Stephens, A., Zrebiec, T. J. and Ban, V. S., Mat. Res. Bull. 9, 1427 (1974).Google Scholar
3. Bykoviskii, Yu. A, et al. , Soviet Phy. Tech. 23(5) (1978).Google Scholar
4. Cheung, J. T. and Cheung, D. T., J. Vac. Sci. Tech. 21, 182 (1982).Google Scholar
5. Cheung, J. T. and Magee, T., J. Vac. Sci. Tech. A1(3), 1604 (1983).CrossRefGoogle Scholar
6. Sheftal, R. N. and Cherbakov, I. V., Cryst. Res. Tech. 16(8), 887 (1981).Google Scholar
7. Sankur, H. and Cheung, J. T., J. Vac. Sci. Tech. Dec. 1983 (to be published).Google Scholar
8. Sankur, H. and Motamedi, E., Proceeding, Ultrasonic Symposium, Atlanta, Georgia (1983).Google Scholar
9. Sankur, H., this proceeding.Google Scholar
10. Yang, H. T. and Cheung, J. T., J. Cryst. Growth, 56, 429 (1982).Google Scholar
11. Hanabusa, M. and Suzuki, M., Laser and Electron Beam Inteaction with Solids, edited by Appleton, B. R. and Celler, G. E. (North-Holland, N.Y. 1982), p. 559.Google Scholar
12. Gaponov, S., Luskin, B. M. and Salaschenka, N. NB., Solid State Commun. 39, 301 (1981).Google Scholar
13. Ong, N. P. and Kote, G., Cheung, J. T., Phys. Rev. 28(4), 2289 (1983).Google Scholar
14. Rolinskgi, E. J., Earley, D. and Joyce, T., Adv. Mass. Spect. 6, 587 (1974).Google Scholar
15. Schwartz, G. P., Bondybey, V. E., English, J. H. and Gautieri, G. J., Appl. Phys. Lett. 42(11), 952 (1983).Google Scholar
16. Ignatowicz, S. A., Thin Solid Films 32, 81 (1976).CrossRefGoogle Scholar
17. Farrow, R. F. C., Jones, G. R., Williams, G. M., Sullivan, P. W., Boyle, W. J. O., and Wotherspoon, J. T. K., J. Phys. D. 12, L117 (1979).Google Scholar
18. Slack, J. R. and Burfoot, J. C., J. Phys. C. 4, 898 (1971).CrossRefGoogle Scholar
19. Calaway, A. R., Appl. Phys. Lett. 38, 701 (1981).Google Scholar