Hostname: page-component-7bb8b95d7b-dtkg6 Total loading time: 0 Render date: 2024-09-13T13:19:14.921Z Has data issue: false hasContentIssue false

Mechanism of the Charge Transport in Intercalated Compounds Application of Optical and Potential Electrochemical Spectroscopies

Published online by Cambridge University Press:  28 February 2011

C. Julien*
Affiliation:
Laboratoire de Physique des Solides, associé au CNRSUniversité P. et M. Curie, 4 place Jussieu, 75252 Paris Cedex 05, France
Get access

Abstract

Layered compounds are known to be among the best host structures to practice lithium intercalation chemistry. Besides geometrical aspects which play an important role but are now quite well understood, this paper emphasizes the mechanism of the charge transfer upon intercalation. Electrochemical and optical spectroscopies associated to transport measurements are used for the investigations of the electronic modifications involved in the charge transfer in lithium intercalated compounds. A selection of appropriate materials is discussed. Optical spectroscopies such as photoluminescence, Raman scattering and far-infrared reflectivity show that free-carrier density and electron mobility change drastically. A good agreement is obtained with the data measurements carried out by transport experiments.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Rouxel, J., Physica B 99, 3 (1980).Google Scholar
2. Winn, D.A., Shemilt, J.M. and Steele, B.C.H., Mat. Res. Bull. 11, 559 (1976).Google Scholar
3. Basu, S. and Worrell, W.L., in Fast Ion Transport in Solids, edited by Vashishta, P., Mundy, J.N. and Shenoy, G.K. (North-Holland, Amsterdam, 1979), p. 149.Google Scholar
4. Samaras, I., Saikh, S.I., Julien, C. and Balkanski, M., Mater. Sci. Eng. B 3, 209 (1989).Google Scholar
5. Liang, W.Y.. Mater. Sci. Eng. B 3, 139 (1989).Google Scholar
6. Fisher, J.E., Physica B 22, 383 (1980).Google Scholar
7. Thompson, A.H., Phys. Rev. Lett. 35, 1786 (1975).Google Scholar
8. Julien, C., Jouanne, M., Burret, P.A. and Balkanski, M., Solid State Ionics 28–30, 1167 (1988).Google Scholar
9. Pereira, C.M. and Liang, W.Y., J. Phys. C 18, 6075 (1985).Google Scholar
10. Ratajack, M.T., Kannewurf, C.R., Revelli, J.F. and Wagner, J.B., Phys. Rev. B 12, 4674 (1978).CrossRefGoogle Scholar
11. Beal, A.R. and Liang, W.Y., J. Phys. C 6, L482 (1973).Google Scholar
12. Sudharsanan, R., Bardhan, K.K., Clayman, B.P. and Irwin, J.C., Solid State Commun. 62, 563 (1987).Google Scholar
13. Barj, M., Sourisseau, C., Ouvrard, G. and Brec, R., Solid State Ionics 11, 179 (1983).Google Scholar
14. Acrivos, J.V., Liang, W.Y., Wilson, J.A. and Yoffe, A.D., J. Phys. C 4, L18 (1979).Google Scholar
15. Hermann, A.M., Somoano, R.B., Hadek, V. and Rembaum, A., Solid State Commun. 13, 1065 (1973).Google Scholar
16. Whangbo, M.H., Brec, R., Ouvrard, G. and Rouxel, J., Inorg. Chemistry 24, 2459 (1985).Google Scholar
17. Fatseas, G.A., Evain, M., Ouvrard, G., Brec, R. and Whangbo, M.H., Phys. Rev. B 35, 3682 (1987).Google Scholar
18. Rouxel, J., J. Solid State Chem. 17, 223 (1976).Google Scholar
19. Lucovsky, G., White, R.M., Benda, J.A. and Revelli, J.F., Phys. Rev. B 7, 3859 (1973).Google Scholar
20. Hibma, T., Physica B 99, 136 (1980).Google Scholar
21. Thompson, A.H., J. Electrochem. Soc. 126, 608 (1979).Google Scholar
22. Thompson, A.H., in Fast Ion Transport in Solids, edited by Vashishta, P., Mundy, J.N. and Shenoy, G.K. (North-Holland, Amsterdam, 1979), p. 47.Google Scholar
23. Jacobsen, T., West, K. and Atlung, S., J. Electrochem. Soc. 126, 2169 (1979).Google Scholar
24. Berlinsky, A.J., Unruh, W.G., McKinnon, W.R. and Haering, R.R., Solid State Commun. 31, 135 (1979).Google Scholar
25. Julien, C. and Samaras, I., to be published.Google Scholar
26. Chrissafis, K., Zamani, M., Kambas, K., Stoemenos, J., Economou, N.A., Samaras, I. and Julien, C., Mater. Sci. Eng. B 3, 145 (1989).Google Scholar
27. Hangyo, M., Nakashima, S., Mitsuishi, A., Kurosawa, K. and Saito, S., Solid State Commun. 65, 419 (1988).Google Scholar
28. Julien, C. and Jouanne, M. in Chemical Physics of Intercalation, NATO-ASI Series B, vol. 172, edited by Legrand, A.P. and Flandrois, S. (Plenum, New-York, 1987), p. 433.Google Scholar
29. Kanehisa, M.A., Europhys. Conf. Abstracts A 12, 252 (1988).Google Scholar
30. Levy-Clement, C., Rioux, J., Dahn, J.R. and McKinnon, W.R., Mat. Res. Bull..1, 1629 (1984).Google Scholar
31. Sekine, T., Julien, C., Samaras, I., Jouanne, M. and Balkanski, M., Mater. Sci. Eng. B 3, 153 (1989).Google Scholar
32. Sekine, T., Izumi, M., Nakashizu, T., Uchinokura, K. and Matsuura, E., J. Phys. Soc. Jpn. 49, 1009 (1980).Google Scholar
33. Canny, J.V. Mc, J. Phys. C 12, 3263 (1979).Google Scholar
34. Umigar, C., Ellis, D.E., Wang, D.S., Krakaver, H. and Postemak, M., Phys. Rev. B 26, 4935 (1982).Google Scholar
35. Kukkonen, C.A., Kaiser, W.J., Logothetis, E.M., Blumenstock, B.J., Schroeder, P.A., Faile, S.P., Colella, R. and Gambold, J., Phys. Rev. B 24, 1691 (1981).Google Scholar
36. Isomaki, H., J. von Boehm and Krusius, P., J. Phys. C 12, 3239 (1979).Google Scholar
37. Lelidis, I., Siapkas, D., Julien, C. and Balkanski, M., Mater. Sci. Eng. B 3, 133 (1989).Google Scholar
38. Baumard, J.F. and Gervais, F., Phys. Rev. B 15, 2316 (1977).Google Scholar
39. Ruvalds, J. and Virosztek, A., Phys. Rev. B 42, 4064 (1990).Google Scholar