Hostname: page-component-84b7d79bbc-g7rbq Total loading time: 0 Render date: 2024-07-26T04:29:43.016Z Has data issue: false hasContentIssue false

Mechanisms of Intersubband Transition in n-Type III-V Quantum Well Superlattice and Improvement on Absorption for TE Polarized Field

Published online by Cambridge University Press:  10 February 2011

C. W. Cheah
Affiliation:
Center for Optoelectronics, Department of Electrical Engineering, National University of Singapore, 10, Kent Ridge Crescent, Singapore119260, Republic of Singapore
G. Karunasiri
Affiliation:
Center for Optoelectronics, Department of Electrical Engineering, National University of Singapore, 10, Kent Ridge Crescent, Singapore119260, Republic of Singapore
L. S. Tan
Affiliation:
Center for Optoelectronics, Department of Electrical Engineering, National University of Singapore, 10, Kent Ridge Crescent, Singapore119260, Republic of Singapore
Get access

Abstract

In this paper, the theoretical study of intersubband transitions in quantum well infrared photodetectors (QWIPs) applying the eight bands k.p model incorporated with envelope function approximation is described. The focus of the work is on the intersubband transition in n-type IIIV QWIP based on AIGaAs/GaAs and AlGaAs/InGaAs material system, with particular emphasis placed on the physics of TE excited transition and the improvement of resulted absorption. Various theoretical absorption spectra of the two material systems are compared, the distinct mechanisms of the intersubband transition for the two material systems are proposed. Possible ways of improving on the absorption for such excitation are also investigated and discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Peng, L. H., and Fonstad, C. G., Appl. Phys. Lett. 62, 342 (1993); J. Appl. Phys. 77, 747 (1995); J. Appl. Phys. 80, 603 (1996).Google Scholar
2. Lew, L. C., Willatzen, M., and Ram-Mohan, L. R., J. Appl. Phys. 78, 295 (1995).Google Scholar
3. Lew, L. C., Willatzen, M., Cardona, M., and Ram-Mohan, L. R., J. Appl. Phys. 80, 600 (1996).Google Scholar
4. , Shik, Intersubband Transitions in Quantum Wells (Plenum Press, New York, 1992), p. 319.Google Scholar
5. Flatte, M. E., Young, M., Peng, L H., and Ehrenreich, H., Phys. Rev. B 53, 1963 (1996).Google Scholar
6. Liu, H. C., Buchanan, M., and Wasilewski, Z. R., Appl. Phys. Lett. 72, 1682 (1998).Google Scholar
7. Karunasiri, R. P. G., Park, J. S., Chen, J., Shih, R., Scheihing, J. F., and Dodd, M.A., Appl. Phys. Lett. 67, 2600 (1995).Google Scholar
8. Li, H. S., Karunasiri, R. P. G., Chen, Y. W., and Wang, K. L., J. Vac. Sci. Technol. B 11(3), 922 (1993).Google Scholar
9. Wang, S. Y., and Lee, C., Appl. Phys. Lett. 71, 119 (1997).Google Scholar
10. Yuan, Zhenyu, Chen, Zhenghao, Cui, Dafu, Ma, Jianwei, Hu, Qiang, Zhou, Junming, and Zhou, Yueliang, Appl. Phys. Lett. 67(7), 930 (1995).Google Scholar
11. Bastard, G., Wave Mechanics Applied to Semiconductor Heterostructures (Halsted Press, New York, 1988), p. 44.Google Scholar
12. Smith, D.L., and C, Mailhiot, Rev. Mod. Phys. 62, 173 (1990).Google Scholar
13. Bastard, G., Phys. Rev. B 24, 5693 (1981); Phys. Rev. B 25, 7584 (1982).Google Scholar
14. Altarelli, M., Interfaces, Quantum Wells, and Superlattices, edited by Leavens, C. Richard and Taylor, Roger, 43.Google Scholar
15. Chuang, S. L., Physics of Optoelectronic Devices (John Wiley & Sons, New York, 1995).Google Scholar
16. Choi, K. K., The Physics of Quantum Well Infrared Photodetector (World Scientific, Singapore, 1997), p. 81.Google Scholar
17. Yu, P. Y., and Cardona, M., Fundamentals of Semiconductors (Springer, New York, 1996), p. 67.Google Scholar