Hostname: page-component-84b7d79bbc-c654p Total loading time: 0 Render date: 2024-07-26T05:25:34.275Z Has data issue: false hasContentIssue false

Mechanisms of Transition-Element-Gettering in Silicon

Published online by Cambridge University Press:  03 September 2012

Dieter Gilles*
Affiliation:
Wacker Chemitronic GmbH, PO Box 1140, D-8263 Burghausen, Germany
Get access

Abstract

The unique properties of 3d-transition elements in silicon are reviewed that are essential for an understanding of gettering phenomena. Transition-element-gettering techniques are divided into two groups, depending on whether or not the dominant gettering mechanism operates during annealing or cooling down of silicon wafers. Experiments that identify the gettering mechanism are presented for oxygen precipitation-induced gettering (internal gettering) as well as phosphorus-diffusion gettering. It is concluded that only the latter technique operates during high-temperature treatment.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tsuchiya, N., Tanaka, M., Kageyama, M., Kubota, A., and Matsushita, Y., Ext. Abstr. 22nd Conf. Solid State Devices and Materials, 1990, p. 1131 Google Scholar
2. Weber, E. R., Appl. Phys. A30, 1 (1983)CrossRefGoogle Scholar
3. Schröter, W., Seibt, M., and Gilles, D., in Electronic structure and properties of semiconductors, vol. ed. Schröter, W. (VCH, Weinheim, 1991) pp. 539589 Google Scholar
4. Feichtinger, H., in Electronic structure and properties of semiconductors, vol. ed. Schröter, W. (VCH, Weinheim, 1991) pp. 143195 Google Scholar
5. Tan, T. Y., Gardner, E. E., Tice, W. K., Appl. Phys. Lett. 30, 175 (1977)Google Scholar
6. Mets, E. J., J. Electrochem. Soc. 112, 420 (1965)Google Scholar
7. Meek, R. L. and Seidel, T. E., J. Phys. Chem. Solids 36, 731 (1975)Google Scholar
8. Meek, R. L., Seidel, T. E., and Cullis, A. G., J. Electrochem. Soc. 112, 786 (1975)Google Scholar
9. Chen, M. C. and Silvestri, V. L., J. Electrochem. Soc 129, 1294 (1982)CrossRefGoogle Scholar
10. Mathiot, D. and Barbier, D., in Defects in Silicon II, edited by Bullis, W. M., Gösele, U., and Shimura, F. (The Electrochemical Society. Pennington. NJ, USA) pp. 469475 Google Scholar
11. Zoth, G. and Bergholz, W., J. Appl. Phys. 67, 6764 (1990)Google Scholar
12. Hall, R. N. and Racette, H., J. Appl. Phys. 35, 379 (1964)Google Scholar
13. Gilles, D., Bergholz, W., and Schröter, W., Phys. Rev. B 41, 5770 (1990)Google Scholar
14. Shockley, W. and Moll, J. L., Phys. Rev. 119, 1480 (1960)Google Scholar
15. Keller, R., Deicher, M., Pfeiffer, W., Skudlik, H., Steiner, D., and Wiehert, Th., Phys. Rev. Lett. 65, 2023 (1990)Google Scholar
16. Stallhofer, P., Huber, H., Blöchl, P., and Schwenk, H., in Semiconductor Silicon, edited by Huff, H. R., Barraclough, K. G., and Chikawa, Y. I. (The Electrochemical Soc, Pennington, NJ, USA, 1990)pp. 10161028 Google Scholar
17. Seibt, M., in Semiconductor Silicon 1990, edited by Huff, H. R., Barraclough, K. G., and Chikawa, Y. I. (The Electrochemical Soc., Pennington, NJ, USA, 1990) p. 663 Google Scholar
18. Pomerantz, D., J. Appl. Phys. 38, 5020 (1967)Google Scholar
19. Wong, H., Cheung, N. W., and Chu, P. K., Appl. Phys. Lett. 46, 419 (1988)Google Scholar
20. Lee, D. M., Posthill, J. B., Shimura, F., and Rozgonyi, G. A., Appl. Phys. Lett. 53, 370 (1988)CrossRefGoogle Scholar
21. Schröter, W. and Kühnapfel, R., Appl. Phys. Lett. 56, 2207 (1989)Google Scholar
22. Lescronier, D., Paugam, J., Pelous, G., Richou, F., Salvi, M., J. Appl. Phys. 52, 5090 (1981)Google Scholar
23. Corbett, J. W., Deak, P., Lindström, J. L., Roth, L. M., and Snyder, L. C., Mater. Sci. Forum 38–41, 579 (1989)Google Scholar
24. Graff, K., Hefner, H., and Hennerici, W., J. Electrochem. Soc. 135, 952 (1988)Google Scholar
25. Gilles, D., Weber, E. R., and Hahn, S., Phys. Rev. Lett. 64, 196 Google Scholar
26. Falster, R., Laczik, Z., Brooker, G. R., and Török, P., in Proc. of the 4th Intern. Autumn Meeting on Gettering and Defect Engineering in Semiconductor Technology, edited by Kittler, M. (Sci. Tech. Publ. Vaduz, Liechtenstein, 1991) pp. 3338 Google Scholar
27. Ewe, H., to be publishedGoogle Scholar
28. Bergholz, W., in Defects in Semiconductors 1982, Physica 116B, 312 (1983)Google Scholar
29. Hahn, S., Arst, M., Rist, K. N., Shatas, S., Stein, H. J., Rek, Z. U., and Tiller, W. A., J. Appl. Phys. 64, 849 (1988)Google Scholar
30. Hu, S. M., J. Appl. Phys. 70, R53 (1991)Google Scholar
31. Ryoo, K., Drosd, R., Wood, W., J. Appl. Phys. 63, 4440 (1988)Google Scholar
32. Bourret, A. and Schröter, W., Ultramicroscopy 14, 97 (1984)Google Scholar
33. Kühnapfel, R., Schröter, W., and Gilles, D., in Materials Science Forum, vol. 10–12, edited by von Bardeleben, H. J. (Trans Tech Publ., Aedermanndorf, Switzerland, 1986)p. 151 Google Scholar