Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-07-03T02:19:00.087Z Has data issue: false hasContentIssue false

Melt-Spun Permanent Magnet Alloy with Enhanced Isotropic Remanence

Published online by Cambridge University Press:  26 February 2011

A. M. Kadin
Affiliation:
Ovonic Synthetic Materials Co., Inc., A Subsidiary of Energy Conversion Devices, Inc., Troy, Michigan 48084
R. W. McCallum
Affiliation:
Ames Laboratory - U.S. Department of Energy, Ames, Iowa 50011.
G. B. Clemente
Affiliation:
Ovonic Synthetic Materials Co., Inc., A Subsidiary of Energy Conversion Devices, Inc., Troy, Michigan 48084
J. E. Keem
Affiliation:
Ovonic Synthetic Materials Co., Inc., A Subsidiary of Energy Conversion Devices, Inc., Troy, Michigan 48084
Get access

Abstract

Rapid solidification onto a copper quench surface (melt-spinning) has been used to fabricate a high-performance permanent magnet alloy (Ovonic Hi-Rem™) based on the Nd-Fe-B class of materials. Crucial idditions of alloying elements are combined with careful control over quench parameters to yield a random assembly of microcrystallites, with macrosconically isotropic magnetic properties including values of remanent induction that can exceed 10 kG and maximum energy products greater than 20 MGOe. These values exceed those expected from conventional randomly oriented magnets. The enhanced magnetic performance is related to results of x-ray diffraction and electron microscopy.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Buschow, K.H.J.. Materials Science Reports 1, 1 (1986), and referencesCrossRefGoogle Scholar
2. Herbst, J.F., Croat, J.J., Pinkerton, F.E., and Yelon, W.B., Phys. Rev. B 29, 4176 (1984).CrossRefGoogle Scholar
3. Koon, N.C., Das, B.N., Rubinstein, M., and Tvson, J., J. Appl. Phys. 57, 4091 (1985).CrossRefGoogle Scholar
4. Narasimhan, K.S.V.L., J. Appl. Phys. 57, 4081 (1985).CrossRefGoogle Scholar
5. Bergeron, R., McCallum, R.W., Canavan, K., and Keem, J.E., Laid-Open European Patent Application 0–195,219 (Sent. 24, 1986).Google Scholar
6. McCallum, R.W., Kadin, A.M., Clemente, G.B., and Keem, J.E., Proc. 31st Conf. on Magnetism and Magnetic Materials, Baltimore, Maryland, Nov. 17–20, 1986, to appear in J. Appl. Phys., April 1987.Google Scholar
7. Sagawa, M., Fujimura, S., Togawa, N., Yamamoto, H., and Matsura, Y., J. Appl. Phys. 55, 2083 (1984).Google Scholar
8. Li, D., Mildrum, H.F., and Strnat, K.J., J. Appl. Phys. 57, 4140 (1985).CrossRefGoogle Scholar
9. Becker, J.J., J. Appl. Phys. 55, 2067 (1984).CrossRefGoogle Scholar
10. Croat, J.J., Herbst, J.F., Lee, R.W., and Pinkerton, F.E., J. Appl. Phys. 55, 2078 (1984).CrossRefGoogle Scholar
11. Koon, N.C. and Das, B.N., J. Appl. Phys. 55, 2063 (1984).Google Scholar
12. Hadjapanayis, G.C., Hazelton, R.C., and Lawless, K.R., J. Appl. Phys. 55, 2073 (1984).CrossRefGoogle Scholar
13. Lee, R.W., Appl. Phys. Lett. 46, 790 (1985).CrossRefGoogle Scholar
14. Stoner, E.C. and Wohlfarth, E.P., Philos. Trans. R. Soc. Lond. A 240, 599 (1948).Google Scholar
15. Zijlstra, H., Chapter 2 in Ferromagnetic Materials, Vol. 3, ed. By Wohlfarth, E.P. (North-Holland Publishing Co., Amsterdam, 1982).Google Scholar
16. McCurrie, R.A., J. Appl. Phys. 52, 7344 (1981).CrossRefGoogle Scholar
17. Herbst, J.F. and Tracy, J.C., J. Appl. Phys. 50, 4283 (1979).CrossRefGoogle Scholar
18. Clemente, G.B. et al. manuscript in preparation.Google Scholar
19. Young, R.A., Mackie, P.E., Dreele, R.B. von, J. Appl. Cryst. 10, 262 (1977).CrossRefGoogle Scholar