Hostname: page-component-84b7d79bbc-g5fl4 Total loading time: 0 Render date: 2024-07-28T05:18:44.370Z Has data issue: false hasContentIssue false

Metal-Organic Chemical Vapor Deposition of Zn-In-Sn-O and Ga-In-Sn-O Transparent Conducting Oxide Thin Films

Published online by Cambridge University Press:  10 February 2011

A. Wang
Affiliation:
Department of Chemistry
N.L. Edleman
Affiliation:
Department of Chemistry
J.R. Babcock
Affiliation:
Department of Chemistry
T.J. Marks
Affiliation:
Department of Chemistry, tjmarks@casbah.acns.nwu.edu
M.A. Lane
Affiliation:
Department of Electrical and Computer Engineering Materials Research Center, Northwestern University, Evanston, IL 60208-3113
P.W. Brazis
Affiliation:
Department of Electrical and Computer Engineering Materials Research Center, Northwestern University, Evanston, IL 60208-3113
C.R. Kannewurf
Affiliation:
Department of Electrical and Computer Engineering Materials Research Center, Northwestern University, Evanston, IL 60208-3113
Get access

Abstract

The metal-organic chemical vapor deposition (MOCVD) technique has been successfully applied for growth of Sn-doped transparent, conducting Zn-In-O and Ga-In-O films using Sn(acac)2, In(dpm)3, Ga(dpm)3, and Zn(dpm)2, as volatile precursors. The 25 °C electrical conductivity of the as-grown films is as high as 1030 S/cm (n-type, carrier density N = 4.5 × 1020 cm−3, mobility µ = 14.3 cm2/V•s) for the Zn-In-O series and 700 S/cm (n-type, N = 8.1 × 1019 cm−3, µ = 55.2 cm2/V•s) for the Ga-In-O series. After Sn-doping, the Zn-In-O series exhibits 25 'C electrical conductivities as high as 2290 S/cm with a higher carrier mobility, while the Ga-InO series exhibits higher electrical conductivity (3280 S/cm at 25 °C) and much higher carrier density, but with diminished mobility. All films show broader optical transparency windows than that of commercial ITO films. Reductive annealing, carried out at 400-425 °C in a flowing gas mixture of H2(4%) and N2, results in increased carrier density and mobility as high as 64.6 cm2/V•s for films without Sn doping, but lowered carrier density for the Sn-doped films. X-ray diffraction, transmission electron microscopy, micro diffraction, and high-resolution X-ray analysis show that all films with good conductivity have cubic, homogeneously doped In2O3-like crystal structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Granqvist, C.G., Appl. Phys. A 52, 83 (1991).Google Scholar
2. Jarzebski, Z.M., Phys. Status Solidi A 71, 13 (1982).Google Scholar
3. Tahar, R.B.H., Ban, T., Ohya, Y. and Takahashi, Y., J. Appl. Phys. 83, 2631 (1998).Google Scholar
4. Wang, R., Sleight, A.W., Platzer, R. and Gardner, J.A., J. Solid State Chem. 122, 166 (1996); R. Wang, L.H. King and A.W. Sleight, J. Mater. Res. 11, 1659 (1996).Google Scholar
5. Omata, T., Ueda, N., Hikuma, N., Ueda, K., Mizoguchi, H., Hashimoto, T. and Kawazoe, H., Appl. Phys. Lett. 62,499 (1993).Google Scholar
6. Phillips, J.M., Kwo, J., Thomas, G.A., Carter, S.A., Cava, R.J., Huo, S.Y., Krajeewski, J.J. Jr, Marshall, J.H., Peck, W.F. Rapkine, D.H. and van, R.B. Dover, Appl. Phys. Lett. 65, 115 (1994); R.J. Cava, J.M. Phillips, J. Kwo, G.A. Thomas,, S.A. Carter, J.J. Krajewski, W.F. Peck, Jr. J.H. Marshall, and D.H. Rapkine, ibid., 64, 2071 (1994).Google Scholar
7. Phillips, J.M., Cava, R.J., Thomas, G.A., Carter, S.A., Kwo, J., Siegrist, T., Krajewski, J.J., Marshall, J.H., Peck, W.F. Jr, and Rapkine, D.H., ibid., 67, 2246 (1995).Google Scholar
8. Palmer, G.B., Poeppelmeier, K.R., and Mason, T.O., Chem. Mater. 9, 3121 (1997).Google Scholar
9. Moriga, T., Edwards, D.D., Mason, T.O., Palmer, G.B., Peoppelmeier, K.R. Schindler, J.L., Kannewurf, C.R. and Nakabayashi, I., J Am. Ceram. Soc. 81, 1310 (1998); D.D. Edwards, P.E. Folkins and T.O. Mason, ibid., 80, 253 (1997).Google Scholar
10. Edwards, D.D., Mason, T.O., Goutenoire, F. and Peoppelmeier, K.R., Appl. Phys. Lett. 70, 1706 (1997).Google Scholar
11. Minami, T., Kakumu, T. and Takata, S., J. Vac. Sci. Technol. A 14, 1704 (1996); T. Minami, S. Takata and T. Kakumu, ibid., 14, 1689 (1996); T. Minami, Y. Takeda, T. Kakumu, S. Takata and I. Fukuda, ibid., 15, 958 (1997).Google Scholar
12. Minami, T., Kakumu, T., Shimokawa, K. and Takata, S., Thin Solid Films 317, 318 (1998).Google Scholar
13. Messaoudi, C., Sayah, D. and Abd-Lefdil, M, Phys. Stat. Sol. (a) 151, 93 (1995).Google Scholar
14. Goyal, D.J., Agashe, C., Takwale, M.G. and Bhide, V.G., J. Mater. Res. 8, 1052 (1993).Google Scholar
15. Nishino, J., Kawarada, T., Ohshio, S., Saitoh, H., Maruyama, K. and Kamata, K., J. Mater. Sci. Lett. 16, 629 (1997).Google Scholar
16. Wang, A., Dai, J.Y., Cheng, J.Z., Chudzik, M.P., Marks, T.J., Chang, R.P.H., and Kannewurf, C.R., Appl. Phys. Lett. 73, 327 (1998).Google Scholar
17. Wang, A., Cheng, S.C., Belot, J.A., McNeely, R.J., Cheng, J., Marcordes, B., Marks, T.J. et al. , Mat. Res. Soc. Symp. Proc. 495, 3 (1998).Google Scholar
18. Hinds, B.H., McNeely, R.J., Studebaker, D.B., Marks, T.J., Hogan, T.P., Schindler, J.L., Kannewurf, C.R., Zhang, X.F., Miller, D., J. Mater. Res. 12, 1214 (1997).Google Scholar
19. Han, B., Neumayer, D.A., Schulz, D.L., Hinds, B.J., Marks, T.J., Zhang, H. and Dravid, V.P., Chem. Mater. 6, 18 (1994).Google Scholar
20. Mizuhashi, M., Thin Solid Films 70, 91 (1980).Google Scholar
21. Ryabova, L.A., Salun, V.S. and Serbinov, L.A., Thin Solid Films 92, 327 (1982).Google Scholar