Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-07-08T02:26:40.307Z Has data issue: false hasContentIssue false

Metastability of Phosphorus- or Boron Doped a-Si:H Films

Published online by Cambridge University Press:  10 February 2011

P. St'ahel
Affiliation:
Laboratoire de Physique des Interfaces et des Couches Minces, UMR 7647 CNRS, Ecole Polytechnique, 91128 Palaiseau, Cedex, France Dept. of Physics, PdF Masaryk University, Brno, Czech Republic Laboratoire d'Optique des Solides, (UMR 7601 CNRS), Universitd Pierre et Marie Curie, 75252 Paris Cedex 05, France
P. Roca i Cabarrocas
Affiliation:
Laboratoire de Physique des Interfaces et des Couches Minces, UMR 7647 CNRS, Ecole Polytechnique, 91128 Palaiseau, Cedex, France
P. Sladek
Affiliation:
Dept. of Physics, PdF Masaryk University, Brno, Czech Republic
M.L. Theye
Affiliation:
Laboratoire d'Optique des Solides, (UMR 7601 CNRS), Universitd Pierre et Marie Curie, 75252 Paris Cedex 05, France
Get access

Abstract

The effects of light-soaking on either phosphorus- or boron-doped a-Si:H films were studied as functions of the doping level and the temperature. In the case of boron-doped films, the most important effect is the improvement of the conductivity during light-soaking, which is related to the activation of boron. On the contrary, phosphorus-doped films present a remarkable stability, although lightly phosphorus-doped ones show a decrease of their conductivity by five orders of magnitude when light-soaking is performed below 40 °C. This effect is attributed to the formation of P-H complexes which are stable at low temperature only. Our results suggest that in both types of doped a-Si:H films the creation of metastable defects is a second order effect with respect to the activation or passivation of dopants, which results from their interaction with hydrogen.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Spear, W.E. and Comber, P.G. Le, Solid State Communications 16, 49 (1975).Google Scholar
2 Stutzmann, M., Bieglesen, D.K., and Street, R.A., Phys. Rev. B 35, 5666 (1987).Google Scholar
3 Street, R.A. in Hydrogenated Amorphous Silicon, Cambridge University Press (1991).Google Scholar
4 Stutzman, M., Jackson, W.B., and Tsai, C.C., Phys. Rev. B 32, 23 (1985).Google Scholar
5 Godet, C. and Cabarrocas, P. Roca i, J. Appl. Phys. 80, 97 (1996).Google Scholar
6 Skumanich, A., N. Amer, M., Jackson, W., Phys. Rev. B 31, 2263 (1985).Google Scholar
7 Stutzmann, M., Phys. Rev. B 35, 9735 (1987).Google Scholar
8 Okishi, H., Banerjee, R., and Tanaka, K. in Amorphous Silicon and Related Materials, edited by Fritzsche, H., World Scientific Publishing Company (1988), pp. 657685.Google Scholar
9 Nebel, C.E., Street, R.A., Jackson, W. B., and Johnson, N. M., Philos. Mag. B 69, 291 (1994).Google Scholar
10 Jang, J., Park, S. Ch., Kim, S. Ch. and Lee, Ch., Appl. Phys. Lett. 51, 1804 (1987).Google Scholar
11 Cabarrocas, P. Roca i, Chévrier, J.B., Huc, J., Lloret, A., Parey, J.Y., and Schmitt, J.P.M., J. Vac. Sci. Technol. A 9, 2331 (1991).Google Scholar
12 Morin, P. and Cabarrocas, P. Roca i, MRS Symp. Proc. Vol. 336, 281 (1994).Google Scholar
13 Hadjadj, A., St'ahel, P., Cabarrocas, P. Roca i, Paret, V., Bounouh, Y., and Martin, J.C., J. Appl. Phys. 83, 830 (1998).Google Scholar
14 St'ahel, P., Hadjadj, A., Sladek, P., and Roca, P. i Cabarrocas. Proc. 14th EPVSEC, Barcelona, June 1997, p. 640. Edited by Ossenbrink, H.A., Helm, P. and Ehmann, H.. Published by H.S. Stephens and Associates, Bedford, UK.Google Scholar
15 Agarwal, P. and Agarwal, S.C., J. Appl. Phys. 81, 3214 (1997).Google Scholar
16 Benatar, L., Grimbergen, M., Fahrenbruch, A., Lopez-Otero, A., Redfield, D., and Bube, R., Mat. Res. Soc. Symp. Proc. 258, 461 (1992).Google Scholar
17 Branz, H. M., Phys. Rev. B 38, 7474 (1988).Google Scholar
18 Fritzche, H., Mat. Res. Soc. Symp. Proc. 467, 19 (1997).Google Scholar
19 Pankove, J.I., Zanzucchi, P. J., and Magee, C. W. Appl. Phys. Lett. 46, 421 (1985).Google Scholar
20 Chevallier, J. in Defect and Diffusion Forum, 131–132, 989 (1996).Google Scholar
21 Boyce, J.B. and Ready, S.E., Physica B 170, 305 (1991).Google Scholar
22 Fedders, P. A., and Drabold, D.A., J. Non Cryst. Solids (to be published).Google Scholar
23 Isomura, M., Kinoshita, T. and Tsuda, S., J. Non Cryst. Solids 198–200, 453 (1996); M. Isomura, M. Tanaka, and S. Tsuda, Appl. Phys. Lett. 69, 1396 (1996).Google Scholar
24 Cabarrocas, P. Roca i, Appl. Phys. Lett. 65, 1674 (1994).Google Scholar
25 Weil, R., Busso, A., Beyer, W., Appl. Phys. Lett. 53, 2477 (1988).Google Scholar