Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-23T20:22:23.235Z Has data issue: false hasContentIssue false

Metastable changes of the electrical conductivity in microcrystalline silicon

Published online by Cambridge University Press:  17 March 2011

N. H. Nickel
Affiliation:
Hahn-Meitner-Institut Berlin, Kekuléstr. 5, D-12489 Berlin, Germany
M. Rakel
Affiliation:
Hahn-Meitner-Institut Berlin, Kekuléstr. 5, D-12489 Berlin, Germany
Get access

Abstract

The temperature dependence of the dark conductivity, σD, of as-grown and H depleted µproportional σc-Si was measured. While σD of the H depleted samples did not exhibit any influence of thermal treatment prior to the measurements, in as-grown σproportional µc-Si the dark conductivity increased by 2 orders of magnitude below 300 K upon rapid thermal quenching. The frozen-in state is reversible and an anneal at 440 K followed by a slow cool completely restores the initial state. The time and temperature dependence of the relaxation of the quenched-in state reveals two competing processes. At short times σD increases due to the activation of a donor complex and at long times σD decreases due to the dissociation of bond-center H complexes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Staebler, D. L. and Wronski, C. R., Appl. Phys. Lett. 31, 292 (1977).Google Scholar
[2] Nickel, N. H., Jackson, W. B., and Johnson, N. M., Phys. Rev. Lett. 71, 2733 (1993).10.1103/PhysRevLett.71.2733Google Scholar
[3] Pfleiderer, H., Kusian, W., and Krühler, W., Solid St. Commun. 49, 493 (1984).Google Scholar
[4] Jackson, W. B. and Moyer, M. D., Phys. Rev. B 36, 6217 (1987).10.1103/PhysRevB.36.6217Google Scholar
[5] Street, R. A., Hack, M., and Jackson, W. B., Phys. Rev. B 37, 4209 (1988).Google Scholar
[6] Street, R. A., Kakalios, J., Tsai, C. C., and Hayes, T. M., Phys. Rev. B 35, 1316 (1987).Google Scholar
[7] Dersch, H., Stuke, J., and Beichler, J., Appl. Phys. Lett. 36, 456 (1981).Google Scholar
[8] Nickel, N. H., Johnson, N. M., and Walle, C. G. Van de, Phys. Rev. Lett. 72, 3393 (1994).Google Scholar
[9] Gorelkinskii, Y. V. and Nevinnyi, N. N., Sov. Tech. Phys. Lett. 13, 45 (1987).Google Scholar
[10] Walle, C. G. Van de, Denteneer, P. J. H., Bar-Yam, Y., and Pantelides, S. T., Phys. Rev. B 39, 10791 (1989).Google Scholar
[11] Meier, J., Flückiger, R., Keppner, H., and Shah, A., Appl. Phys. Lett. 65, 860 (1994).10.1063/1.112183Google Scholar
[12] Tanielian, M., Phil. Mag. B 45, 435 (1982).Google Scholar
[13] Mott, N. F., J. Non-Cryst. Solids 1, 1 (1968).Google Scholar
[14] Walle, C. G. Van de, Denteneer, P. J. H., Bar-Yam, Y., and Pantelides, S. T., Phys. Rev. B 39, 10791 (1989).Google Scholar
[15] Wieringen, A. Van and Warmoltz, N., Physica (Utrecht) 22, 849 (1956).10.1016/S0031-8914(56)90039-8Google Scholar
[16] Walle, C. G. Van de, Phys. Rev. B 49, 4579 (1994).Google Scholar
[17] Newman, R. C. and Jones, R., in Oxygen in Silicon, edited by Shimura, F. (Academic Press, San Diego, 1994), Vol. 42, p. 289.Google Scholar
[18] Markevich, V. P. and Suezawa, M., J. Appl. Phys. 83, 2988 (1998).Google Scholar