Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-16T19:59:48.935Z Has data issue: false hasContentIssue false

Metastable Defects in a-Si:H from Bond-length Disorder

Published online by Cambridge University Press:  10 February 2011

Qiming li
Affiliation:
Department of Physics and Astronomy and Microelectronics Research Center Iowa State University, Ames, Iowa 50011
R. Biswas
Affiliation:
Department of Physics and Astronomy and Microelectronics Research Center Iowa State University, Ames, Iowa 50011
Get access

Abstract

A model of metastable defect formation via H-rebonding in hydrogenated amorphous silicon is developed where the defect density and defect formation energy are controlled by the bond-length disorder of the material. Dangling bond defects are created by H motion from SiH bonds to weak Si-Si bonds. The model predicts formation energies for thermal and light-induced defects in good agreement with experiment. The relaxation of thermal equilibrium defects is stretched exponential, with stretch parameters varying approximately linearly with temperature and relaxation times that are thermally activated- in good agreement with experiment. The annealing of light-induced defect densities also shows relaxation behavior. The model accounts for barriers of ≈ 1.5 eV for H diffusion. The energetics of the H*2 complex will also be discussed. The rms bond-length deviation is a new parameter that controls the quality of the material.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Qiming Li and Biswas, R., Phys. Rev. B 52, 10705, 1995); Mat. Res. Soc. Symp. Proc. 377, 407 (1995); Appl. Phys. Lett. 68, 2261 (1996).Google Scholar
[2] Cody, G. D., J. Non. Cryst. Sol. 141, 3 (1992).Google Scholar
[3] Street, R. A., Hydrogenated amorphous silicon (Cambridge University Press, Cambridge, 1991).Google Scholar
[4] Street, R., Solar Cells 30, 207 (1990).Google Scholar
[5] Street, R. A. and Winer, K., Phys. Rev. B 40, 6236 (1989).Google Scholar
[6] Stutzmann, M., Jackson, W. B., and Tsai, C. C., Phys. Rev. B32, 23(1985).Google Scholar
[7] For a review, see Kakalios, J. in Semiconductors and Semimetals (Academic Press, San Diego, 1991) Vol.34, Chapter 12; and J. Kakalios, R. A. Street, and W. B. Jackson, Phys. Rev. Lett., 59, 1037(1987); W. B, Jackson, and J. Kakalios, Phys. Rev. B37, 1020(1988).Google Scholar
[8] Filipponi, A., Evangelisti, F., Benfatto, M., Mobilio, S., and Natoli, C.R., Phys. Rev. B 40, 9636 (1989); and W. Schulke, Phil. Mag. B 43, 451 (1981).Google Scholar
[9] Smith, Z. E. and Wagner, S., Phys. Rev. Lett. 59, 688 (1987).Google Scholar
[10] Hata, N. and Wagner, S., J. Appl. Phys. 72, 2857 (1992).Google Scholar
[11] Qiming, Li and Biswas, R., Phys. Rev. B 50, 18090 (1994).Google Scholar
[12] Van de Walle, C., Phys. Rev. B 49, 4579(1994) and C. Van de Walle and R. A. Street, Phys. Rev. B 49, 14766 (1994).Google Scholar
[13] Jackson, W. B., Phys. Rev. B41, 10257 (1990).Google Scholar
[14] Bube, R. H. and Redfield, D., J. Appl. Phys. 66, 820 (1989).Google Scholar
[15] Meaudre, R. and Meaudre, M., Phys. Rev. B45, 12134 (1992); and R. Meaudre, M. Meaudre, and S. Vignoli, Phys. Rev. B49, 1716 (1994).Google Scholar
[16] Tang, X. M., Weber, J., Baer, Y., and Finger, F., Phys. Rev. B 42, 7277 (1990), and J. Shinar, R. Shinar, X. L. Wu, S. Mitra and R. F. Girvan, Phys. Rev. B 43, 1631 (1991).Google Scholar
[17] Gleskova, H., Morin, P. A., and Wagner, S., Appl. Phys. Lett. 62, 2063 (1993).Google Scholar
[18] Yang, L. and Chen, L.-F., Proc. Mat. Res. Soc. Symp. 297, 619 (1993).Google Scholar
[19] Graeff, C. F. O., Buhleier, R., and Stutzmann, M., Appl. Phys. Lett. 62, 3001 (1993).Google Scholar