Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-17T10:39:02.619Z Has data issue: false hasContentIssue false

Microstructural Development to Toughen Sic

Published online by Cambridge University Press:  10 February 2011

W. J. Moberlychan
Affiliation:
Center for Advanced Materials, Lawrence Berkeley Laboratory, Berkeley, CA 94720
R. M. Cannon
Affiliation:
Center for Advanced Materials, Lawrence Berkeley Laboratory, Berkeley, CA 94720
L. H. Chan
Affiliation:
Komag, Inc., 591 Yosemite Dr., Milpitas, CA 95035
J. J. Cao
Affiliation:
Materials Science & Engineering Dept., UC Berkeley, Berkeley, CA 94720
C. J. Gilbert
Affiliation:
Materials Science & Engineering Dept., UC Berkeley, Berkeley, CA 94720
R. O. Ritchie
Affiliation:
Materials Science & Engineering Dept., UC Berkeley, Berkeley, CA 94720
L. C. De Jonghe
Affiliation:
Materials Science & Engineering Dept., UC Berkeley, Berkeley, CA 94720
Get access

Abstract

SiC offers a promise for high strength applications at high temperature; however, poor fracture resistance has inhibited its utility. Recent developments to control microstructure during hot pressing have improved fracture toughness >3 fold, while also improving strength 50% above that of a commercial SiC, Hexoloy. This ABC-SiC (designated for the Al, B, and C additives) utilizes liquid phase sintering to obtain full densification at 1650°C, and to induce the β-3C to α-4H phase transformation below 1900°C. Interlocking, plate-like, α grains, coupled with a thin (˜1 nm) amorphous layer, provide for tortuous intergranular fracture and high toughness.

This study focuses on the developing microstructure; how the α-4H polytype grows as a stacking modification of the β-3C grains, and how amorphous grain boundaries and crystalline triple point phases develop and interact with the crack geometry. HR-TEM and Image-Filtered EELS characterize the amorphous grain boundaries. Field Emission - SEM, EDS and Auger Electron Spectroscopy characterize the fracture morphology and the chemistry of grain boundaries and triple points. Electron Diffraction and HR-TEM depict an epitaxial relationship between triple point phases (Al8B4C7 and A14O4C) and matrix α-SiC grains, the development of which affects the mechanical toughening. The transformation to toughen SiC is compared to the well-studied transformation processing in Si3N4. A distinct advantage is the interlocked nature of the plate-like grains which causes strong elastic bridging behind the crack tip.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Heuer, A. H., Fryburg, G. A., Ogbuji, L. U., Mitchell, T. E., and Shinozaki, S, J. Am. Ceram. Soc., 61 [9] p.406412 (1978).Google Scholar
2. Mitchell, T. E., Ogbuji, L. U., and Heuer, A. H., J. Am. Ceram. Soc., 61 [9] p.4124–413 (1978).Google Scholar
3. Ogbuji, L. U., Mitchell, T. E., and Heuer, A. H., J. Am. Ceram. Soc., 64 [2] p.9199 (1981).Google Scholar
4. Ogbuji, L. U., Mitchell, T. E., Heuer, A. H., and Shinozaki, S., J. ACS, 64 [2] p.100105 (1981).Google Scholar
5. Shinozaki, S., Hangas, J., Maeda, K., and Soeta, A., in Silicon Carbide ′87,Cawley, J. D. and Semler, C. E. Ed., Ceramic Transactions, 2, p. 113–21 (1987).Google Scholar
6. Williams, R. M., Juterbock, B. N., Shinozaki, S., Peters, C. R., and Whalen, T. J., Am. Ceram. Soc. Bull., 64 [10], p.1385–89 (1985).Google Scholar
7. Mulla, M. A. and Krstic, V. D., Am. Ceram. Soc. Bull., 70 [3] p. 439–43 (1991).Google Scholar
8. Cao, J.J., MoberlyChan, W.J., De Jonghe, L.C., Gilbert, C.J., – Ritchie, R.O, J. ACS, (in press).Google Scholar
9. Gilbert, C. J., Cao, J. J., MoberlyChan, W. J., Jonghe, L. C. De, and Ritchie, R. O., Acta Metall. et Mater. (in press).Google Scholar
10. Wei, G. Becher, P., J. Am. Ceram. Soc., 67 [8] p.571–74 (1984).Google Scholar
11. Mitchell, T. Jr., De Jonghe, L. C., MoberlyChan, W. J., and Ritchie, R. O., J. Am. Ceram. Soc. 78 [1] p.97103 (1995).Google Scholar
12. MoberlyChan, W. J., Cao, J. J., Niu, M. Y., and De Jonghe, L. C., in High Performance Composites, ed. Chawla, K. K., Liaw, P. K., and Fishman, S., TMS Publ., p. 219229 (1994).Google Scholar
13. Lee, S. K. and Kim, C. H., J. Am. Ceram. Soc., 77 [6] p. 16551658 (1994).Google Scholar
14. Padture, N. P., J. Am. Ceram. Soc., 77 [2] p.519523 (1994).Google Scholar
15. Becher, P. F., J. Am. Ceram. Soc., 74 [2] 256269 (1991).Google Scholar
16. Mulla, M. A. and Krstic, V. D., Acta Metall. Mater. 42 [1] p. 303308 (1994).Google Scholar
17. Hoffman, M. J., Oral Presentation at ACS meeting, New Orleans, Nov. 1995.Google Scholar
18. Robinson, S, H, Shanefield, D. J., and Niesz, D. E., Oral Presentation at ACS, Nov. 1995.Google Scholar
19. Winn, E. J. and Clegg, W. J., Oral Presentation at ACS meeting, New Orleans, Nov. 1995.Google Scholar
20. Chadwick, M. M., Jupp, R. S., and Wilkinson, D. S., J. ACS, 76 [2] 385396 (1993).Google Scholar
21. MoberlyChan, W. J., Schwartzman, A. F., Cao, J. J., & De Jonghe, L.C. (submit to J. Mat. Sci.)Google Scholar
22. MoberlyChan, W. J., Cao, J. J., & De Jonghe, L. C., (to be submitted to J. Am. Ceram. Soc.).Google Scholar
23. Ruska, J., Gauckler, L. J., Lorenz, J. L., and Rexer, , J. Mater. Sci., 14 [8] p.2013–17 (1979).Google Scholar
24. MoberlyChan, W. J., Cao, J. J., & De Jonghe, L. C., (submitted to Acta Metall. Mater.).Google Scholar
25. Cannon, R. M. & MoberlyChan, W. J., (to be submitted to Comm. Am. Ceram. Soc.).Google Scholar
26. O'Keefe, M. A. and Radmilovic, V., EMSA Proceedings, editor J., Bentley, SF Press (1992).Google Scholar