Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-20T02:22:09.936Z Has data issue: false hasContentIssue false

Microstructure and Mechanical Properties of Ni3Al-Ai2O3 Composites Produced by Hot Extrusion

Published online by Cambridge University Press:  21 February 2011

C. G. McKamey
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
E. H. Lee
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
Get access

Abstract

Hot extrusion of premixed charges of 10–20 vol% chopped A12O fiber and Ni3Al powder has resulted in composite alloys of near theoretical density. In tensile tests at room temperature, density-compensated yield strengths of some of these composite alloys are as good or better than those of as-cast Ni3Al without reinforcement; however strengths at 1000°C in vacuum are lower. The low strength at 1000°C and fine grain size (2–3/μm) suggest the presence of superplastic behavior and the accompanying diffusional creep and grain boundary sliding. This presentation discusses our findings to date and includes microstructural studies and tensile properties, both at room temperature in air and 1000°C in vacuum.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hack, John E. and Amateau, Maurice F., eds., Mechanical Behavior of Metal-Matrix Composites (The Metallurgical Society of AIME, 1982).Google Scholar
2. Lemkey, F. D., Fishman, S. G., Evans, A. G., and Strife, J. R., eds., High Temperature/High Performance Composites (Mater. Res. Soc. Proc. 120, Pittsburgh, PA 1988).Google Scholar
3. J.-Yang, M., Kao, W. H., and Liu, C. T., Mater. Sci. and Eng. A 107, 81 (1989).Google Scholar
4. Liu, C. T., White, C. L., and Horton, J. A. Jr., Acta Metall. 33, 213 (1985).Google Scholar
5. Liu, C. T., Proc. Micon 1986 Symposium, (ASTM, Feb. 1988), p. 222.Google Scholar
6. Yang, J.-M., Kao, W. H. and Liu, C. T., in High Temperature Ordered Intermetallic Alloys III, edited by Liu, C. T., et al. (Mater. Res. Soc. Proc. 133, Pittsburgh, PA 1989) pp. 453458.Google Scholar
7. Yang, J. M., Kao, W. H., and Liu, C. T., Met. Trans. A 20, 2459 (1989).Google Scholar
8. Nourbakhsh, S., Liang, F. L., and Margolin, H., Adv. Man. Proc. 3 (1), 57 (1988).Google Scholar
9. Nourbakhsh, S., Liang, F.-L., and Margolin, H., in High Temperature Ordered Intermetallic Alloys III, edited by Liu, C. T., Taub, A. I., Stoloff, N. S., and Koch, C. C. (Mater. Res. Soc. Proc. 133 Pittsburgh, PA 1989) pp. 459464 Google Scholar
10. Moore, B., Bose, A., German, R. M., and Stoloff, N. S., High Temperature/High Performance Composites, edited by Lemkey, F. D., Fishman, S. G., Evans, A. G., and Strife, J. R. (Mater. Res. Soc. Proc. 120, Pittsburgh, PA 1988) pp. 5156.Google Scholar
11. Povirk, G. L., Horton, J. A. Jr., McKamey, C. G., Tiegs, T. N., and Nutt, S. R., J. Mater. Sci. 23(11), 3945 (1988).Google Scholar
12. McKamey, C. G., Povirk, G. L., Horton, J. A., Tiegs, T. N., and Ohriner, E. K., in High Temperature Ordered Intermetallic Alloys III, edited by Liu, C. T., Taub, A. I., Stoloff, N. S., and Koch, C. C. (Mater. Res. Soc. Proc. 133 Pittsburgh, PA 1989) pp. 609614.Google Scholar
13. Rack, H. J. and Niskanen, P. W., Light Metal Age, Feb., 9 (1984).Google Scholar
14. Dhingra, A. K., “Advances in Inorganic Fiber Developments,” in Contemporary Topics in Polymer Science, Vol.5, edited by Vandenberg, E. J. (Plenum Press, New York, 1984), p. 227.Google Scholar
15. Romine, James C., Ceram. Eng. Sci. Proc. 8 (7–8), 755 (1987).Google Scholar
16. Reinshagen, John H., Ametek Specialty Metal Products Div., personal communication.Google Scholar