Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-18T01:09:26.622Z Has data issue: false hasContentIssue false

Microvoids and Photoconductivities in a-SiC:H and a-Si:H

Published online by Cambridge University Press:  25 February 2011

A. H. Mahan
Affiliation:
Solar Energy Research Institute, Golden, CO 80401
D. L. Williamson
Affiliation:
Colorado School of Mines, Golden, CO 80401
B. P. Nelson
Affiliation:
Solar Energy Research Institute, Golden, CO 80401
Get access

Abstract

Small microvoids having a radius of gyration between 3.3Å-4.6Å are found by the Small Angle X-Ray Scattering (SAXS) technique to exist in both glow discharge a-Si1−xCx:H (O<x<0.3) and a-Si:H (40°C<Ts<250°C) films. Included in these results are the first observation of microvoids, as detected by SAXS, in device quality a-Si:H. The volume fraction of microvoids (vf) is found to increase from 0.01 in device quality a-Si:H to greater than 0.20 for both the a-SiC:H(x=.30) and a-Si:H(Ts=40°C) films. Tilting experiments indicate that the microvoids are non-oriented (spherical) in a-SiC:H and are oriented (columnar) in non-device quality a-Si:H. The normalized coplanar photoconductivities of all samples decrease with increasing vf, but for a given vf the photoconductivity is larger in a-SiC:H than in a-Si:H. We discuss reasons for this behavior.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Baum, J., Gleason, K.K., Pines, A., Carroway, A.N. and Reimer, J.A., Phys. Rev. Lett. 56, 1377 (1986).Google Scholar
2. Chabal, Y.J. and Patel, C.K.N., Reviews Mod. Phys. 59, 835 (1987).Google Scholar
3. Wagner, H. and Beyer, W., Solid State Commun. 48, 585 (1983).Google Scholar
4. Mahan, A. H., Raboisson, P., Williamson, D. L., and Tsu, R., Solar Cells 21, 117 (1987).Google Scholar
5. Mahan, A.H., Raboisson, P. and Tsu, R., Appl. Phys. Lett. 50, 335 (1987); A. H. Mahan, P. Menna and R. Tsu, Appl. Phys. Lett. 51, 1167 (1987).Google Scholar
6. Beyer, W., Wagner, H., and Mell, H., MRS Symp. 49, 189 (1985).CrossRefGoogle Scholar
7. Bhide, V.G., Dusane, R. O., Rajarshi, S. V., Shaligram, A. D. and David, S. K., J. Appl. Phys. 62, 108 (1987).Google Scholar
8. Shevchik, N. J. and Paul, W., J. Non-Cryst. Solids 16, 55 (1974).Google Scholar
9. Leadbetter, A. J., Rashid, A. A. M., Richardson, R. M., Wright, A. F., and Knights, J. C., Solid State Commun. 33, 973 (1980).Google Scholar
10. D'Antonio, P. and Konnert, J. H., Phys. Rev. Lett. 43, 1161 (1979).Google Scholar
11. Mahan, A. H., Nelson, B. P., Crandall, R. S., and Williamson, D. L., 2nd Int. Conf. on Amorphous and Crystal SiC and Related Materials (IEEE, New York, 1989), in press.Google Scholar
12. Williamson, D. L., Mahan, A. H., Nelson, B. P. and Crandall, R. S., submitted to Appl. Phys. Lett.Google Scholar
13. Tsuo, Y. S., Xu, Y., Crandall, R. S., Ullal, H. and Emery, K., MRS Spring 1989 Meeting, in press. Typical material parameters of the intrinsic layer are also given.Google Scholar
14. Guinier, A. and Fournet, G., Small Angle Scattering of X-Rays (John Wiley, New York, 1955), p. 30.Google Scholar
15. Menna, P., Mahan, A. H., and Tsu, R., 19th IEEE PV Spec. Cont. (IEEE, New York, 1987), p. 832.Google Scholar
16. Mahan, A. H., Mascarenhas, A., Williamson, D. L. and Crandall, R. S., MRS Symp. 118, 641 (1988).Google Scholar
17. Bhattacharya, E., Mahan, A. H., Crandall, R. S., and Pankove, J. I., Appl. Phys. Lett. 54, 1247 (1989).Google Scholar
18. McMahon, T. J. and Xi, J. P., AIP Conf. Proc. 157 (AIP, New York, 1987), p. 278.Google Scholar