Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-11T02:25:31.292Z Has data issue: false hasContentIssue false

Microwave Magneto-Electric Interactions in Multiferroics

Published online by Cambridge University Press:  26 February 2011

Gopalan Srinivasan
Affiliation:
srinivas@oakland.edu, Oakland University, Physics, Walton Blvd, Rochester, MI, 48309, United States, 248 370 34129
A.S. Tatarenko
Affiliation:
tatarenk@oakland.edu, Oakland University, Physics, Rochester, MI, 48309, United States
Y. K. Fetisov
Affiliation:
fetisov@mirea.ru, Oakland University, Physics, Rochester, MI, 48309, United States
V. Gheevarughese
Affiliation:
vagheeva@oakland.edu, Oakland University, Physics, Rochester, MI, 48309, United States
M.I. Bichurin
Affiliation:
bmi@mail.natm.ru, Novgorod State University, Institute for Electronic and Information Systems, Novgorod, N/A, Russian Federation
Get access

Abstract

Investigations on microwave magneto-electric (ME) interactions at 1-10 GHz have been carried out on yttrium iron garnet (YIG)-lead zirconate titanate (PZT) and YIG-lead magnesium niobate lead titanate (PMN-PT) bilayers. Ferromagnetic resonance is a powerful tool for such studies. An electric field E applied to the composite produces a mechanical deformation in PZT or PMN-PT, resulting in a shift in the resonance field for YIG. Information on the nature of high frequency ME coupling has been obtained from data on resonance field shift vs E. A cavity resonator or stripline structure was used. The measured ME interactions are in the range 1-5 Oe cm/kV. The coupling strength has been found to be dependent on magnetic field orientation. The strongest interaction is measured in YIG-PZT systems. The design and characterization of ferromagnetic resonance based, electric field tunable ME resonators and filters are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Van den Boomgaard, J., Run, A. M. J. G. van, and Suchtelen, J. Van, Ferroelectrics 14, 727 (1976).Google Scholar
2. Lupeiko, T. G., Lisnevskaya, I. V., Chkheidze, M. D., and Zvyagintsev, B. I., Inorganic Materials 31, 1245 (1995).Google Scholar
3. Ryu, J., Carazo, A. V.,Uchino, K., and Kim, H., Jpn. J. Appl. Phys. 40, 4948 (2001).Google Scholar
4. Cai, N., Zhai, J., Liu, L., Lin, Y. and Nan, C.-W., Mater. Sci. Eng. B 99, 211 (2003).Google Scholar
5. Bichurin, M.I., Petrov, R.V. and Kiliba, Yu.V., Ferroelectrics 204, 311 (1997).Google Scholar
6. Shastry, S., Srinivasan, G., Bichurin, M. I., Petrov, V. M., and Tatarenko, A. S., Phys. Rev. B. 70, 064416 (2004).Google Scholar
7. Bichurin, M.I., Kornev, I. A., Petrov, V. M., Tatarenko, A. S., Kiliba, Yu. V., and Srinivasan, G., Phys. Rev. B 64, 094409 (2001).Google Scholar
8. Bichurin, M.I., Petrov, V.M. and Yu. Kiliba, V., and Srinivasan, G., Phys. Rev. B. 66, 134404 (2002).Google Scholar
9. Srinivasan, G., Hayes, R., and Bichurin, M. I., Solid State Commun. 128, 261 (2003).Google Scholar
10. Adam, , Davis, L. E., Dionne, G. F., Schloemann, E. F., and Stitzer, S. N., IEEE Trans. Microwave Theory Tech. 50, 721 (2002).Google Scholar
11. Tatarenko, A. S., Bichurin, M. I. and Srinivasan, G., Elec. Lett. 41, 596 (2005).Google Scholar
12. Fetisov, Y. K. and Srinivasan, G., Appl. Phys. Lett. 88, 143503 (2006).Google Scholar