Hostname: page-component-848d4c4894-89wxm Total loading time: 0 Render date: 2024-07-06T05:42:28.768Z Has data issue: false hasContentIssue false

Microwave Sintering of Nanocrystalline TiO2

Published online by Cambridge University Press:  28 February 2011

J. A. Eastman
Affiliation:
Argonne National Laboratory, Materials Science Division, Argonne, IL 60439
K. E. Sickafus
Affiliation:
Los Alamos National Laboratory, Materials Science Division, Los Alamos, NM 87545
J. D. Katz
Affiliation:
Los Alamos National Laboratory, Materials Science Division, Los Alamos, NM 87545
S. G. Boeke
Affiliation:
Los Alamos National Laboratory, Materials Science Division, Los Alamos, NM 87545
R. D. Blake
Affiliation:
Los Alamos National Laboratory, Materials Science Division, Los Alamos, NM 87545
C. R. Evans
Affiliation:
Los Alamos National Laboratory, Materials Science Division, Los Alamos, NM 87545
R. B. Schwarz
Affiliation:
Los Alamos National Laboratory, Materials Science Division, Los Alamos, NM 87545
Y. X. Liao
Affiliation:
Argonne National Laboratory, Materials Science Division, Argonne, IL 60439
Get access

Abstract

Nanocrystalline TiO2 compacts having initial approximate mean grain sizes of 14 nm and approximate green densities of 70% of theoretical were sintered by short-time exposure in a 2.45 GHz microwave cavity to maximum temperatures of 800, 1000 or 1200 ºC. Sample densities were measured before and after exposure to microwaves using Archimede's method. Transmission electron microscopy and x-ray diffraction were utilized to monitor grain growth and phase changes. Rutherford backscattering was used to monitor any changes in oxygen stoichiometry. The results of this study indicate that enhanced densification behavior is obtained for microwavesintered samples relative to samples sintered using conventional pressureless-sintering techniques.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kimoto, K., Kamiya, Y., Nonoyama, M. and Uyeda, R., Jpn. J. Appl. Phys. 2, 702 (1963).Google Scholar
2. Granqvist, C. G. and Buhrman, R. A., J. Appl. Phys. 47, 2200 (1976).Google Scholar
3. Gleiter, H., in Deformation of Polycrystals: Mechanisms and Microstructures, Hansen, N. et al. , eds. (Rise National Laboratory, Roskilde, 1981).Google Scholar
4. Hahn, H., Eastman, J. A. and Siegel, R. W., Ceram. Trans. B 1, 1115 (1988).Google Scholar
5. Hahn, H., Logas, J. and Averback, R. S., J. Mater. Res., 5, [3], 609614 (1990).Google Scholar
6. Mayo, M. J., Siegel, R. W., Narayanasamy, A. and Nix, W. D., J. Mater. Res., 5., [5], in press (1990).Google Scholar
7. Hahn, H., Hofler, H. J. and Averback, R. S., Mat. Sci. Forum.Google Scholar
8. Hahn, H., Logas, J., Hofler, H. J., Bier, Th. and Averback, R. S., Mat. Res. Soc. Symp. Proc. 132, 3539 (1989).Google Scholar
9. Bennett, C. E. G., McKinnon, N. A. and Williams, L. S., Nature, 217 1287–88 (1968).Google Scholar
10. Kemer, E. L. and Johnson, D. L., Am. Ceram. Soc. Bull., 64 [8], 1132–36 (1985).Google Scholar
11. Katz, J. D., Blake, R. D. and Scherer, C. P., Ceram. Eng. Sci. Proc. 10 [7-8], 857867 (1989).Google Scholar