Hostname: page-component-5c6d5d7d68-ckgrl Total loading time: 0 Render date: 2024-08-31T09:23:16.112Z Has data issue: false hasContentIssue false

Microwave Sintering Technology for the Production of Metal Oxide Varistors

Published online by Cambridge University Press:  28 February 2011

G. McMahon
Affiliation:
Ceramics Kingston Inc., P.O. Box 655, Kingston, Ontario, Canada K7L 4X1
A. Pant
Affiliation:
Ceramics Kingston Inc., P.O. Box 655, Kingston, Ontario, Canada K7L 4X1
R. Sood
Affiliation:
Ceramics Kingston Inc., P.O. Box 655, Kingston, Ontario, Canada K7L 4X1
A. Ahmas
Affiliation:
Ceramic Section, EM&R/CANMET, 405 Rochester St., Ottawa, Ontario, Canada KIA OGI
R.T. Holt
Affiliation:
National Aeronautical Establishment, NRC, Building M-13, Montreal Rd., Ottawa, Ontario, Canada KlA 0R6
Get access

Abstract

A microwave sintering technology has been developed for the production of metal oxide varistors. The electrical properties (leakage current and non-linearity coefficient) of the microwave sintered devices were found to be comparable to those obtained for conventionally sintered varistors of identical composition. Additionally, the reference voltages were greater (by a factor of two) and the biaxial moduli of rupture were higher for the microwave sintered specimens. These differences have been attributed to the smaller grain size associated with the microwave sintered specimens.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sutton, W.H., Ceram. Bull. 68, 376 (1989).Google Scholar
2. Meek, T.T., J. Mat. Sci. Lett. 6, 638 (1987).Google Scholar
3. Katz, J.D., Blake, R.D., Petrovic, J.J. and Scheinberg, H. in Microwave Processing of Materials, edited by Sutton, W.H., Brooks, M.H. and Chabinsky, I.J. (Mater. Res. Soc. Proc. 12A, Pittsburgh, PA 1988) pp. 219226.Google Scholar
4. Meek, T.T., Blake, R.D. and Petrovic, J.J., Ceram. Eng. Sci. Proc. 8, 861 (1987).Google Scholar
5. Corrigan, D., McMahon, G., Pant, A., Saleem, M. and Sood, R., presented at the 1989 Annual Meeting of the American Ceramic Society, Indianapolis, IN, 1989 (unpublished).Google Scholar
6. Meek, T.T., Holcombe, C.E. and Dykes, N., J. Mat. Sci. Lett. 6, 1060 (1987).Google Scholar
7. Wilson, J. and Kunz, S.M., J. Am. Ceram. Soc. 21, C40 (1988).Google Scholar
8. Katz, J.D., Blake, R.D. and Petrovic, J.J., Ceram. Eng. Sci. Proc. 9, 725 (1988).Google Scholar
9. Sokoly, T.O., Seitz, M.A., Guertin, J.P., Schumaker, P.P. and Potter, M.E., EPRI Research Project EL–1647, Project No. 425–1, 1980.Google Scholar
10. Levinson, L.M. and Philipp, H.R., J. Appl. Phys. A6, 1332 (1975).Google Scholar
11. Wong, J., J. Appl. Phys. 47, 4971 (1976).Google Scholar
12. Wong, J., J. Appl. Phys. 46, 1653 (1975).Google Scholar
13. Wong, J., Rao, P., and Koch, E.F., J. Appl. Phys. 46, 1827 (1975).Google Scholar
14. Santhanam, A.T., Gupta, T.K. and Carlson, W.G., J. Appl. Phys. 50, 852 (1979).Google Scholar
15. Lauf, R.J. and Bond, W.D., Ceram. Bull. 63, 278 (1984).Google Scholar
16. Emtage, P.R., J. Appl. Phys. 48, 4372 (1977).Google Scholar