Hostname: page-component-7bb8b95d7b-l4ctd Total loading time: 0 Render date: 2024-09-06T20:11:59.388Z Has data issue: false hasContentIssue false

Mirror Electron Microscope-Low Energy Electron Diffraction for Studies of Surface Ordering and Melting

Published online by Cambridge University Press:  21 February 2011

W. N. Unertl
Affiliation:
Laboratory for Surface Science & Technology, Univ. of Maine, Orono, ME 04469
C. S. Shern
Affiliation:
Dept. of Physics, National Taiwan Normal University, Taipei, Taiwan 11718
Get access

Abstract

Mirror Electron Microscopy – Low Energy Electron Diffraction (MEMLEED) combines a LEED with MEM in a single simple instrument for studies of surface processes such as phase transitions and premelting under ultra-high vacuum (uhv) conditions. In MEMLEED, 5–20 keV primary electrons are decelerated by an electrostatic mirror-objective lens in which the sample is the mirror element. In the MEN mode, electrons are reflected just above the surface, reaccelerated through the objective lens and imaged. Contrast is due to variations in both surface potential and topography. Current uhv instruments have lateral resolution of about 1 μm. In the LEED mode, 0-100 eV electrons strike the sample at near normal incidence. Diffracted electrons are accelerated through the objective lens. Beam spacings in the imaged diffraction pattern are proportional to k11 and beams do not move as the incident energy is varied. MEMLEED has intrinsically higher transfer width and is less sensitive to magnetic fields near the sample than conventional LEED. Design considerations for uhv instruments are discussed. Applications to the study of order-disorder transitions, premelting phenomena, and to measurements of changes in surface potential are described.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Van Hove, M. A., Weinberg, W. H., Chan, C. M., Low Energy Electron D)iffraction (Springer-Verlag, Berlin, 1986).Google Scholar
2. Reflection High-Energy Electron Diffraction and Reflected Electron Imaging of Surfaces, edited by Larson, P. K. and Dobson, P. J. (Plenum Press, New York,1988).Google Scholar
3. Telieps, W. and Bauer, E., Ultramicroscopy 17,57 (1985); Surface Sci. 162, 163 (1985); Ber. Bunsenges. Phys. Chem. 90, 197 (1986).Google Scholar
4. Luk'yanov, A. E., Spivak, G. P., Gvozdover, R. S., Soviet Phys. USP 16, 529 (1974)Google Scholar
5. Park, R. L., J Appl. Phys. 37, 295 (1966).Google Scholar
6. Scheithauer, U., Meyer, G., Henzler, M., Surface Sci. 178, 441 (1986).CrossRefGoogle Scholar
7. Cao, Y. and Conrad, E. H., Rev. Sci. Instrum. 60, 63 (1989).Google Scholar
8. Delong, A. and Drahos, V., Nat. Phys. Soc. 230, 196 (1971).Google Scholar
9. Berger, C., Dupuy, C., Laydevant, L., Bernard, R., J. Appl. Phys. 48, 5027 (1977).Google Scholar
10. Laydevant, L., Berger, C., Dupuy, J. C., Le Vide 158, 348 (1977).Google Scholar
11. Dupuy, J.C., Sibai, A., Vilotitch, B., Surface Sci. 147, 191 (1984).Google Scholar
12. Foster, M. S., Campuzano, J. C., Willis, R. F., Dupuy, J. C., J. Microscopy 140, 395 (1985).Google Scholar
13. Campuzano, J. C., Foster, M. S., Jennings, G., Willis, R. F., Unertl, W. N., Phys. Rev. Lett. 54, 2684 (1984).CrossRefGoogle Scholar
14. Shern, C. S. and Unertl, W. N., J. Vac. Sci. Technol. A 5, 1266 (1987).Google Scholar
15. Parsons, M. J., M. S. Thesis, University of Maine, 1989 (unpublished).Google Scholar
16. Griffith, O. H. and Rempfer, G. F., in Advances in Optical and Electron Microscopy, Vol.10, edited by Barer, R. and Coslett, V. E. (Academic Press, New York, 1987) p. 269.Google Scholar
17. Bauer, E., Ultramicroscopy 17, 51 (1985)Google Scholar
18. Rempfer, G. F. and Griffith, O. H., Ultramicroscopy 27, 273 (1989).Google Scholar
19. Engel, W., PhD Dissertation, Free University, Berlin, 1968 (unpublished)Google Scholar
20. Shern, C. S., PhD Dissertation, University of Maine, Orono, 1986 (unpublished).Google Scholar
21. Storbeck, F., Ann. Physik 23, 209 (1969).Google Scholar
22. Dard, J. and Berger, C., J. Microsc. Spectrosc. Electron. 6, 267 (1981);4, 361 (1979).Google Scholar
23. Drahos, V., Delong, A., Kolarik, V., Lenc, M., J. Microscopie 18, 135 (1973).Google Scholar
24. Dupuy, J. C. and Laydevant, L., J. Phys E 16, 217 (1983).Google Scholar
25. Samanta, P., PhD Dissertation, University of Maine, Orono, 1987 (unpublished).Google Scholar
26. Seiler, H., Abbildung von Oberflacheni (Bibliographisches Inst, Mannheim, 1968) p. 97100.Google Scholar
27. Klemperer, O., Electron Optics (Cambridge Univ. Press, Cambridge, 1971) p.260.Google Scholar
28. Thevuthasan, S. and Unertl, W. N., Appl. Phys. A 51, 1 (1990).Google Scholar
29. Onsager, L., Phys. Rev. 65, 117 (1944).Google Scholar
30. Ma, S. K., Modern Theories of Critical Phenomena (Benjamin, Reading, MA, 1976).Google Scholar
31. Bak, P., Solid State Commun. 32, 581 (1979).Google Scholar
32. Griffith, O. H. and Rempfer, G. F., Adv. Opt. Electron Microsc. 10, 269 (1987).Google Scholar
33. Tonner, B. P. and Harp, G. R., Rev. Sci. Instrum. 59, 853 (1988).CrossRefGoogle Scholar
34. Clarke, A., Jennings, G., Campuzano, J. C., Willis, R. F., Physica Scripta 35. 423 (1987).CrossRefGoogle Scholar
35. Vacuum Generators for J. C. Campuzanno (private communication)Google Scholar
36. General Products Guide (Omicron Vakuumphysik GMBH, Taunusstein, Germany, 1989).Google Scholar