Hostname: page-component-84b7d79bbc-lrf7s Total loading time: 0 Render date: 2024-07-26T02:33:52.587Z Has data issue: false hasContentIssue false

Mobility Range in Hybrid Materials

Published online by Cambridge University Press:  21 February 2011

P. Judeinstein
Affiliation:
Laboratoire de Chimie Structurale Organique (URA 1384), Université Paris Sud, Bât. 410, 91405 ORSAY - FRANCE.
M. E. Brik
Affiliation:
Laboratoire de Chimie Structurale Organique (URA 1384), Université Paris Sud, Bât. 410, 91405 ORSAY - FRANCE.
J. P. Bayle
Affiliation:
Laboratoire de Chimie Structurale Organique (URA 1384), Université Paris Sud, Bât. 410, 91405 ORSAY - FRANCE.
J. Courtieu
Affiliation:
Laboratoire de Chimie Structurale Organique (URA 1384), Université Paris Sud, Bât. 410, 91405 ORSAY - FRANCE.
J. Rault
Affiliation:
Laboratoire de Physique des Solides, Université Paris Sud, Bât 510, 91405 ORSAY - FRANCE.
Get access

Abstract

The dynamical properties of hybrid materials obtained from mixtures of silicon alkoxides and polyethers are studied. Different techniques are used to analyze the mobility of the different parts of the material: thermal analysis (DSC, DTMA) and NMR to probe the collective motion modes and EPR to probe the local scale. The motions are dependent on the organic ratio in the blend and the covalent grafting between the two phases. Some structural models of these blends are proposed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BIBLIOGRAPHY

1 a) Brinker, C. J., Sol-Gel Science, The Physics and Chemistry of Sol-Gel Processing, (Academic Press, San Diego, 1981). b) Proceedings of the First European Workshop on Hybrid Organic-Inorganic Materials, (Eds. C. Sanchez, F. Ribot, 1993).Google Scholar
2 Novak, B. M., Adv. Mater., 5, 422, (1993).Google Scholar
3 Rodrigues, D. E., Brennan, A. B., Betrabet, C., Wang, B., Wilkes, G. L., Chem. Mater., 4, 1437, (1992).Google Scholar
4 Judeinstein, P., Titman, J., Stamm, M., Schmidt, H., Chem. Mater, 6, 127, (1994).Google Scholar
5 Judeinstein, P., Schmidt, H., J. Sol-Gel Sei. and Tech., (accepted).Google Scholar
6 Harris, R. K., Nuclear Magnetic Resonance Spectroscopy, (Pitman Books Ltd., London, 1983).Google Scholar
7 McGhie, A. R., Electrochemical Science and Technology of Polymers-2, (Ed. Linford, R. G., Elsevier, London, 1991), 201.Google Scholar
8 Judeinstein, P., Oliveira, P. W., Krug, H., Schmidt, H., Chem. Phys. Lett., (accepted).Google Scholar
9 Dwek, R. A., Nuclear Magnetic Resonance in Biochemistry, (Clarendon Press, Oxford, 1975), 285.Google Scholar
10 Kumler, P. L., Boyer, R. F., Macromolecules, 9, 903, (1976).Google Scholar
11 Marinovic, T., Valic, S., Andreis, M., Veksli, Z., Polymer, 32, 2519, (1991).Google Scholar
12 Gambogi, J. E., Blum, F. D., Macromolecules, 25, 4526, (1992).Google Scholar