Hostname: page-component-84b7d79bbc-fnpn6 Total loading time: 0 Render date: 2024-07-29T23:19:34.709Z Has data issue: false hasContentIssue false

MOCVD Growth and Characterization of (BaxSr1−x)Ti1+yO3+z Thin Films for High Frequency Devices

Published online by Cambridge University Press:  10 February 2011

P.K. Baumann
Affiliation:
Argonne National Laboratory, Materials Science Division, Argonne, IL 60439
D.Y. Kaufman
Affiliation:
Argonne National Laboratory, Energy Technologies Division, Argonne, IL 60439
S.K. Streiffer
Affiliation:
Argonne National Laboratory, Materials Science Division, Argonne, IL 60439
J. IM
Affiliation:
Argonne National Laboratory, Materials Science Division, Argonne, IL 60439
O. Auciello
Affiliation:
Argonne National Laboratory, Materials Science Division, Argonne, IL 60439
R.A. Erck
Affiliation:
Argonne National Laboratory, Energy Technologies Division, Argonne, IL 60439
J. Giumarra
Affiliation:
Argonne National Laboratory, Energy Technologies Division, Argonne, IL 60439
J. Zebrowski
Affiliation:
New Brunswick Laboratory, Argonne, IL 60439
P. Baldo
Affiliation:
Argonne National Laboratory, Materials Science Division, Argonne, IL 60439
A. McCormick
Affiliation:
Argonne National Laboratory, Materials Science Division, Argonne, IL 60439
Get access

Abstract

We have investigated the structural and electrical characteristics of (BaxSr1−x)Ti1+yO3+z (BST) thin films. The BST thin films were deposited at 650°C on platinized silicon with good thickness and composition uniformity using a large area, vertical liquid-delivery metalorganic chemical vapor deposition (MOCVD) system. The (Ba+Sr)/Ti ratio of the BST films was varied from 0.96 to 1.05 at a fixed Ba/Sr ratio of 70/30, as determined using x-ray fluorescence spectroscopy (XRF) and Rutherford backscattering spectrometry (RBS). Patterned Pt top electrodes were deposited onto the BST films at 350°C through a shadow mask using electron beam evaporation. Annealing the entire capacitor structure in air at 700°C after deposition of top electrodes resulted in a substantial reduction of the dielectric loss. Useful dielectric tunability as high as 2.3:1 was measured.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Flaviis, D., Alexopolous, N.G., and Staffsudd, M., IEEE Trans. Microwave. Tech. 45, 963 (1997).10.1109/22.588610Google Scholar
2. Varadan, V.K., Ghodgaonker, D.K., Varadan, V.V., Kelly, J.F. and Glikerdas, P., Microwave Journal, 35, 116 (1992).Google Scholar
3. Ponds, J.M., Kirchoefer, S.W., Chang, W., Horwitz, J.S., and Chrisey, D.B., Integr. Ferroelectr., 22, 317 (1998).10.1080/10584589808208052Google Scholar
4. Miranda, F.A., Keuls, F.W. Van, Romanofsky, R.R., and Subramanyam, G., Integr. Ferroelectr. 22, 269 (1998).10.1080/10584589808208048Google Scholar
5. Im, J., Auciello, O., Krauss, A.R., Baumann, P.K., and Streiffer, S.K (APL, to be published).Google Scholar
6. Yamamichi, S., Yabuta, H., Sakuma, T., and Miyasaka, Y., Appl. Phys. Lett. 64, 1644 (1994).10.1063/1.111818Google Scholar
7. Buskirk, P.C. van, Roeder, J.F., and Bilodeau, S., Integr. Ferroelectr. 10, 9 (1995).10.1080/10584589508012259Google Scholar
8. Basceri, C., Streiffer, S.K., Kingon, A.I., Waser, R., J. Appl. Phys. 82, 2497 (1997).10.1063/1.366062Google Scholar
9. Streiffer, S.K.. Basceri, C., Parker, C.B., Lash, S.E., and Kingon, A.I., J. Appl. Phys. 86, 4565 (1999).10.1063/1.371404Google Scholar
10. Knauss, L.A., Pond, J.M., Horwitz, J.S., Chrisey, D.B., Mueller, C.H., and Treece, R., Appl. Phys. Lett., 69, 25 (1996).10.1063/1.118106Google Scholar
11. Wu, H.D., and Barnes, F.S., Integr. Ferroelectr. 22, 291 (1998).10.1080/10584589808208050Google Scholar